Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Backs Bear a Heavy Burden

22.02.2013
TAU research finds that heavy loads on the shoulders can cause nerve damage in the hands and fingers

Trudging from place to place with heavy weights on our backs is an everyday reality, from schoolchildren toting textbooks in backpacks to firefighters and soldiers carrying occupational gear.

Muscle and skeletal damage are very real concerns. Now Tel Aviv University researchers say that nerve damage, specifically to the nerves that travel through the neck and shoulders to animate our hands and fingers, is also a serious risk.

Prof. Amit Gefen of TAU's Department of Biomedical Engineering and Prof. Yoram Epstein of TAU’s Sackler Faculty of Medicine, along with PhD student Amir Hadid and Dr. Nogah Shabshin of the Imaging Institute of the Assuta Medical Center, have determined that the pressure of heavy loads carried on the back have the potential to damage the soft tissues of the shoulder, causing microstructural damage to the nerves.

The result could be anything from simple irritation to diminished nerve capacity, ultimately limiting the muscles' ability to respond to the brain's signals, inhibiting movement of the hand and the dexterity of the fingers. In practice, this could impact functionality, reducing a worker's ability to operate machinery, compromise a soldiers' shooting response time, or limiting a child's writing or drawing capacity.

The research was published in the Journal of Applied Physiology and partially supported by a grant from TAU's Nicholas and Elizabeth Slezak Super Center for Cardiac Research and Biomedical Engineering.

Modeling impaired nerve function

Focusing their study on combat units in which soldiers must carry heavy backpacks, the researchers discovered that, in addition to complaining of discomfort or pain in their shoulders, soldiers also reported tickling sensations or numbness in the fingers.

Exploring this issue in a non-invasive manner, they used biomechanical analysis methods originally developed for investigating chronic wounds. The analyses show how mechanical loads, defined as the amount of force or deformation placed on a particular area of the body, were transferred beneath the skin to cause damage to tissue and internal organs.

Based on data collected by MRI, Profs. Gefen and Epstein developed anatomical computer models of the shoulders. These showed how pressure generated by the weight of a backpack load is distributed beneath the skin and transferred to the brachial plexus nerves. The models also account for mechanical properties, such as the stiffness of shoulder tissues and the location of blood vessels and nerves in the sensitive areas which are prone to damage.

Extensive mechanical loading was seen to have a high physiological impact. "The backpack load applies tension to these nerves," explains Prof. Gefen. He notes that the resulting damage "leads to a reduction in the conduction velocity — that is, the speed by which electrical signals are transferred through the nerves." With a delay or reduction in the amplitude or the intensity of signals, nerve communication cannot properly function, he says.

A danger to adults and children

These results apply to people from all walks of life, says Prof. Gefen. Many professions and leisure activities, such as hiking or travelling, involve carrying heavy equipment on the back. The researchers plan to extend this study in two directions: first, to study the effects of load on nerve conductivity, and second, to examine the impact of these heavy loads on a child's anatomy.

School bags are a major concern, he warns. It cannot be assumed that children's bodies react to shoulder stress in exactly the same way as adults. Differences in physiology could lead to different consequences, tolerance, and damage levels.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>