Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Backs Bear a Heavy Burden

22.02.2013
TAU research finds that heavy loads on the shoulders can cause nerve damage in the hands and fingers

Trudging from place to place with heavy weights on our backs is an everyday reality, from schoolchildren toting textbooks in backpacks to firefighters and soldiers carrying occupational gear.

Muscle and skeletal damage are very real concerns. Now Tel Aviv University researchers say that nerve damage, specifically to the nerves that travel through the neck and shoulders to animate our hands and fingers, is also a serious risk.

Prof. Amit Gefen of TAU's Department of Biomedical Engineering and Prof. Yoram Epstein of TAU’s Sackler Faculty of Medicine, along with PhD student Amir Hadid and Dr. Nogah Shabshin of the Imaging Institute of the Assuta Medical Center, have determined that the pressure of heavy loads carried on the back have the potential to damage the soft tissues of the shoulder, causing microstructural damage to the nerves.

The result could be anything from simple irritation to diminished nerve capacity, ultimately limiting the muscles' ability to respond to the brain's signals, inhibiting movement of the hand and the dexterity of the fingers. In practice, this could impact functionality, reducing a worker's ability to operate machinery, compromise a soldiers' shooting response time, or limiting a child's writing or drawing capacity.

The research was published in the Journal of Applied Physiology and partially supported by a grant from TAU's Nicholas and Elizabeth Slezak Super Center for Cardiac Research and Biomedical Engineering.

Modeling impaired nerve function

Focusing their study on combat units in which soldiers must carry heavy backpacks, the researchers discovered that, in addition to complaining of discomfort or pain in their shoulders, soldiers also reported tickling sensations or numbness in the fingers.

Exploring this issue in a non-invasive manner, they used biomechanical analysis methods originally developed for investigating chronic wounds. The analyses show how mechanical loads, defined as the amount of force or deformation placed on a particular area of the body, were transferred beneath the skin to cause damage to tissue and internal organs.

Based on data collected by MRI, Profs. Gefen and Epstein developed anatomical computer models of the shoulders. These showed how pressure generated by the weight of a backpack load is distributed beneath the skin and transferred to the brachial plexus nerves. The models also account for mechanical properties, such as the stiffness of shoulder tissues and the location of blood vessels and nerves in the sensitive areas which are prone to damage.

Extensive mechanical loading was seen to have a high physiological impact. "The backpack load applies tension to these nerves," explains Prof. Gefen. He notes that the resulting damage "leads to a reduction in the conduction velocity — that is, the speed by which electrical signals are transferred through the nerves." With a delay or reduction in the amplitude or the intensity of signals, nerve communication cannot properly function, he says.

A danger to adults and children

These results apply to people from all walks of life, says Prof. Gefen. Many professions and leisure activities, such as hiking or travelling, involve carrying heavy equipment on the back. The researchers plan to extend this study in two directions: first, to study the effects of load on nerve conductivity, and second, to examine the impact of these heavy loads on a child's anatomy.

School bags are a major concern, he warns. It cannot be assumed that children's bodies react to shoulder stress in exactly the same way as adults. Differences in physiology could lead to different consequences, tolerance, and damage levels.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>