Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Automatic Quantification of Heart Valves from Ultrasound


Siemens has developed software, which uses advanced knowledge based data analytics to efficiently model heart valves from 3D Ultrasound images and quantify geometrical dimensions.

Valve geometry features are critical for disease diagnostics as well as surgical and catheter based therapy. Today physicians are performing valve measurement using 2D imaging only, making the decision process time consuming and operator dependent, which reduces its reproducibility.

Automated measurements are now enabled by a new ultrasound probe to reduce complexity that creates unstitched 3D images of the heart in real-time, combined with blood flow imaging via color Doppler technology.

From this image data, the eSie Valves advanced analysis package software enables efficient creation of a 3D model of the mitral and aortic valves, from which a multitude of measurements are computed. The eSie Valves package not only offers fast and reproducible quantification using clinical standard measurements, but also enables standard dynamic measurements of geometrically complex valve anatomy, which would not be practical to obtain manually.

eSie Valves is planned to be delivered with the new PRIME ACUSON SC2000 ultrasound systemPrime Ultrasound scanner.

This system offers a new trans-esophageal ultrasound probe. In practice, the transducer is inserted into the esophagus of a patient via an endoscope. In this way, the heart is imaged at close proximity, yielding highly accurate images. The device also measures the frequency of ultrasound waves reflected by blood cells (Doppler principle) and thereby computes the direction and speed of blood flow.

Learning software identifies heart valves automatically

In these images, eSie Valves automatically identifies heart valves and creates detailed 3D models. Image processing and machine learning technology, developed by Siemens' research division Corporate Technology, builds the foundation of the software. It enables fast and robust object detection within medical image data that is subject to noise and a wide spectrum of variation in appearance due to organ motion, pathology and patient variation. It is based on learning technology that analyzes hundreds of similar images from a database and learns how to identify recurrent image features as reference anatomical landmarks.

In the case of cardiac ultrasound images, a large number of acquisitions from different patients were used for the learning process. The software learns to identify certain anatomical features of different granularity, e.g. the coarse appearance of valves and chambers or fine details such as tips of the mitral valve. Then the software scans the image to determine location and pose of the valves, to finally generate a 3D model of the valve anatomy in a matter of seconds.

In collaboration with leading medical centers, clinical studies highlighted the reproducibility and speed of eSie Valves over competing solutions.

Weitere Informationen:

Dr. Norbert Aschenbrenner | Siemens InnovationNews

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>