Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automated screening process may eventually reduce additional breast cancer surgeries

02.02.2009
A team of researchers at the University of California, San Diego (UCSD) and the Moores UCSD Cancer Center have developed a rapid, automated image screening process to distinguish breast cancer cells from normal cells.

The technique, which is based on the density of cells seen on a microscope slide, may eventually lead to better ways for surgeons to determine if they have removed all of the cancer during breast-conserving cancer surgery and cut down on the number of needed second operations.

One of the biggest dilemmas in breast-conserving "lumpectomies" is whether or not all of the cancer has been removed. To find out, pathologists examine the tissue, looking for cancer cells from the outer margins. But this process is slow, taking up to a week. All too often – between 20 and 50 percent of the time – some disease remains, meaning more surgery.

"The majority of women are good candidates for breast conservation surgery," said breast surgeon Sarah Blair, MD, associate clinical professor of surgery at the UC San Diego School of Medicine, who led the work. "The problem is getting negative margins – meaning the edge of what we remove has no cancer – the first time we operate because we are dealing sometimes with small tumors that can be difficult to see or feel. Right now there is no good way during the operation to make sure that we have removed every cancer cell. We'd like to reduce the need for second operations, which will spare the patient the trauma of surgery again and reduce costs."

Reporting in the Annals of Surgical Oncology, Blair and her co-workers examined samples of normal breast tissue from 10 women and tumor samples from 24 women with cancer. They showed that a technique called automated microscopy, with the help of specially designed computer software, could correctly identify invasive breast cancer cells in 83 percent of the tumor specimens, whereas a normal microscope only identified cancer in 65 percent of the cancer specimens.

The researchers used a method called "touch prep" to collect the cancer cells for evaluation, which entails gathering cells to be stained and then examined and which normally requires a specialized pathologist to subjectively interpret. But in this case, the scientists used the center of the tumor, rather than the outer tissue edges, where it is more difficult to identify cancer cells, to confirm that the technique actually worked.

"We compared manual microscopy, looking at the tissue cells on a slide under the microscope, with automated programs, in which we taught a computer how to look at the slides with a microscope, and they correlated pretty well," Blair said. A camera connected to the microscope takes photos of the slide, which are then analyzed for cancer. "We thought that if we automated it, we could teach the computer what to look for and have the pathologist quickly correlate the computer findings with their findings. We're hoping that the method makes the process more objective."

According to Blair, the automated technique is still too slow to be used in real time during breast surgery. Each slide of breast tissue cells takes about two hours to be analyzed, she said, and six slides are typically examined during breast conservation surgery. They would like to reduce the analysis time to as little as five minutes per slide, and based on the results, know whether or not the patient needs further surgery while she is still in the operating room.

As the researchers continue to refine the technique, they will be able to eventually test its use in examining breast tissue margins. Because it is difficult to identify preinvasive cancer cells, she said, they also want to look at cell surface markers and cell nucleus characteristics to better identify cancer cells and help speed up the identification process. The findings are still preliminary, and Blair and her co-workers are planning to conduct a larger, multicenter trial of the automated technique.

Steve Benowitz | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>