Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autistic brains develop more slowly than healthy brains

21.10.2011
Imaging study shows slower growth extends into adolescence
Researchers at UCLA have found a possible explanation for why autistic children act and think differently than their peers. For the first time, they've shown that the connections between brain regions that are important for language and social skills grow much more slowly in boys with autism than in non-autistic children.

Reporting in the current online edition of the journal Human Brain Mapping, senior author Jennifer G. Levitt, a professor of psychiatry at the Semel Institute for Neuroscience and Human Behavior at UCLA; first author Xue Hua, a UCLA postdoctoral researcher; and colleagues found aberrant growth rates in areas of the brain implicated in the social impairment, communication deficits and repetitive behaviors that characterize autism.

Autism is thought to affect one in 110 children in the U.S., and many experts believe the numbers are growing. Despite its prevalence, little is known about the disorder, and no cure has been discovered.

Normally, as children grow into teenagers, the brain undergoes major changes. This highly dynamic process depends on the creation of new connections, called white matter, and the elimination, or "pruning," of unused brain cells, called gray matter. As a result, our brains work out the ideal and most efficient ways to understand and respond to the world around us.

Although most children with autism are diagnosed before they are 3 years old, this new study suggests that delays in brain development continue into adolescence.

"Because the brain of a child with autism develops more slowly during this critical period of life, these children may have an especially difficult time struggling to establish personal identity, develop social interactions and refine emotional skills," Hua said. "This new knowledge may help to explain some of the symptoms of autism and could improve future treatment options."

The researchers used a type of brain-imaging scan called a T1-weighted MRI, which can map structural changes during brain development. To study how the brains of boys with autism changed over time, they scanned 13 boys diagnosed with autism and a control group of seven non-autistic boys on two separate occasions. The boys ranged in age from 6 to 14 at the time of the first scan; on average, they were scanned again approximately three years later.

By scanning the boys twice, the scientists were able to create a detailed picture of how the brain changes during this critical period of development.

Besides seeing that the white-matter connections between those brain regions that are important for language and social skills were growing much slower in the boys with autism, they found a second anomaly: In two areas of the brain — the putamen, which is involved in learning, and the anterior cingulate, which helps regulate both cognitive and emotional processing — unused cells were not properly pruned away.

(Watch video demonstrating differences in brain changes between autistic and non-autistic boys.)

"Together, this creates unusual brain circuits, with cells that are overly connected to their close neighbors and under-connected to important cells further away, making it difficult for the brain to process information in a normal way," Hua said.

"The brain regions where growth rates were found to be the most altered were associated with the problems autistic children most often struggle with — social impairment, communication deficits and repetitive behavior," she added.

Future studies using alternative neuroscience techniques should attempt to identify the source of this white-matter impairment, the researchers said.

"This study provides a new understanding of how the brains of children with autism are growing and developing in a unique way," Levitt said. "Brain imaging could be used to determine if treatments are successful at addressing the biological difference. The delayed brain growth in autism may also suggest a different approach for educational intervention in adolescent and adult patients, since we now know their brains are wired differently to perceive information."

Other authors on the study included Paul M. Thompson, Alex D. Leow, Sarah K. Madsen, Rochelle Caplan, Jeffry R. Alger, Joseph O'Neill, Kishori Joshi, Susan L. Smalley and Arthur W. Toga, all of UCLA. Support was provided by the National Institutes of Health, the National Alliance for Autism Research, the National Institute of Mental Health and the National Institute of Neurological Disorders and Stroke. The authors report no conflict of interest.

The UCLA Laboratory of Neuro Imaging, which seeks to improve understanding of the brain in health and disease, is a leader in the development of advanced computational algorithms and scientific approaches for the comprehensive and quantitative mapping of brain structure and function. The laboratory is part of the UCLA Department of Neurology, which encompasses more than a dozen research, clinical and teaching programs. The department ranks first among its peers nationwide in National Institutes of Health funding.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Mark Wheeler | EurekAlert!
Further information:
http://www.ucla.edu
http://newsroom.ucla.edu/portal/ucla/autistic-brains-develop-more-slowly-215407.aspx

More articles from Health and Medicine:

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

nachricht Overdosing on Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>