Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autism and schizophrenia share common origin

16.12.2008
First month of pregnancy forms the basis for disrupted development
Schizophrenia and autism probably share a common origin, hypothesises Dutch researcher Annemie Ploeger following an extensive literature study.

The developmental psychologist demonstrated that both mental diseases have similar physical abnormalities which are formed during the first month of pregnancy.

Peculiar toes
Developmental psychologist Annemie Ploeger has investigated whether there is a connection between disorders in the first month of pregnancy and the development of schizophrenia and autism. Interestingly, many physical abnormalities of autistics are also prevalent in schizophrenics. For example, both autistics and schizophrenics sometimes have protruding ears and peculiar toes. There are also differences: a large head and intestinal problems, for example, are typical traits occurring in autistics. From this, Ploeger concluded that the two disorders share a common origin. The same error that occurs very early in pregnancy develops into autism in one individual and schizophrenia in another.
Early vulnerability
Ploeger's research reveals that in the period between 20 and 40 days after fertilisation, the embryo is highly susceptible to disruptions. In this period, early organogenesis, there is a lot of interaction between the different parts of the body. If something goes wrong with a given part of the body, it greatly influences the development of other parts of the body. As people with schizophrenia and autism frequently have physical abnormalities to body parts formed during early organogenesis, Ploeger concluded that the foundation for these psychiatric disorders is laid very early during pregnancy.

The existence of a relationship between unhealthy behaviour during pregnancy and the subsequent development of schizophrenia and autism in the child was already known. However, Ploeger's hypothesis that the early organogenesis stage is the most critical, is new. Ploeger bases her hypothesis on an extensive study of scientific literature in this area. She often had to make use of related studies; although a lot of research has been done into prenatal influences on the development of schizophrenia and autism, little is known about the influence that the period between 20 to 40 days after fertilisation has.

Toxic pregnancy medicine
For example, she acquired information about autism from a study into softenon use. Softenon is a drug against morning sickness that was administered to women in the 1960s and 1970s. Later it was discovered that severely disabled children were born as a result of this medicine. Autistic children were born in four percent of pregnancies in which softenon was used, whereas normally this figure is 0.1 percent. Women could state exactly when they started to take softenon. The women who had taken softenon between the 20th and 24th day of the pregnancy had the greatest chance of giving birth to an autistic child.

Ploeger advises women to stop risky behaviour such as smoking, medicine use and stressful activities before they even become pregnant. If you only start to live healthily once you know that you are pregnant, the basis for a disrupted development of your child could already have been laid.

Ploeger's research was partly financed by NWO is within the research programme Evolution and Behaviour.

Kim van den Wijngaard | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOA_7LPL4Q_Eng

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>