Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autism and schizophrenia share common origin

16.12.2008
First month of pregnancy forms the basis for disrupted development
Schizophrenia and autism probably share a common origin, hypothesises Dutch researcher Annemie Ploeger following an extensive literature study.

The developmental psychologist demonstrated that both mental diseases have similar physical abnormalities which are formed during the first month of pregnancy.

Peculiar toes
Developmental psychologist Annemie Ploeger has investigated whether there is a connection between disorders in the first month of pregnancy and the development of schizophrenia and autism. Interestingly, many physical abnormalities of autistics are also prevalent in schizophrenics. For example, both autistics and schizophrenics sometimes have protruding ears and peculiar toes. There are also differences: a large head and intestinal problems, for example, are typical traits occurring in autistics. From this, Ploeger concluded that the two disorders share a common origin. The same error that occurs very early in pregnancy develops into autism in one individual and schizophrenia in another.
Early vulnerability
Ploeger's research reveals that in the period between 20 and 40 days after fertilisation, the embryo is highly susceptible to disruptions. In this period, early organogenesis, there is a lot of interaction between the different parts of the body. If something goes wrong with a given part of the body, it greatly influences the development of other parts of the body. As people with schizophrenia and autism frequently have physical abnormalities to body parts formed during early organogenesis, Ploeger concluded that the foundation for these psychiatric disorders is laid very early during pregnancy.

The existence of a relationship between unhealthy behaviour during pregnancy and the subsequent development of schizophrenia and autism in the child was already known. However, Ploeger's hypothesis that the early organogenesis stage is the most critical, is new. Ploeger bases her hypothesis on an extensive study of scientific literature in this area. She often had to make use of related studies; although a lot of research has been done into prenatal influences on the development of schizophrenia and autism, little is known about the influence that the period between 20 to 40 days after fertilisation has.

Toxic pregnancy medicine
For example, she acquired information about autism from a study into softenon use. Softenon is a drug against morning sickness that was administered to women in the 1960s and 1970s. Later it was discovered that severely disabled children were born as a result of this medicine. Autistic children were born in four percent of pregnancies in which softenon was used, whereas normally this figure is 0.1 percent. Women could state exactly when they started to take softenon. The women who had taken softenon between the 20th and 24th day of the pregnancy had the greatest chance of giving birth to an autistic child.

Ploeger advises women to stop risky behaviour such as smoking, medicine use and stressful activities before they even become pregnant. If you only start to live healthily once you know that you are pregnant, the basis for a disrupted development of your child could already have been laid.

Ploeger's research was partly financed by NWO is within the research programme Evolution and Behaviour.

Kim van den Wijngaard | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOA_7LPL4Q_Eng

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>