Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In autism, age at diagnosis depends on specific symptoms

10.04.2013
The age at which a child with autism is diagnosed is related to the particular suite of behavioral symptoms he or she exhibits, new research from the University of Wisconsin–Madison shows.

Certain diagnostic features, including poor nonverbal communication and repetitive behaviors, were associated with earlier identification of an autism spectrum disorder, according to a study in the April issue of the Journal of the American Academy of Child and Adolescent Psychiatry. Displaying more behavioral features was also associated with earlier diagnosis.

"Early diagnosis is one of the major public health goals related to autism," says lead study author Matthew Maenner, a researcher at the UW–Madison Waisman Center. "The earlier you can identify that a child might be having problems, the sooner they can receive support to help them succeed and reach their potential."

But there is a large gap between current research and what is actually happening in schools and communities, Maenner adds. Although research suggests autism can be reliably diagnosed by age 2, the new analysis shows that fewer than half of children with autism are identified in their communities by age 5.

One challenge is that autism spectrum disorders (ASD) are extremely diverse. According to the criteria outlined in the Diagnostic and Statistical Manual of Mental Disorders Fourth Edition – Text Revision (DSM-IV-TR), the standard handbook used for classification of psychiatric disorders, there are more than 600 different symptom combinations that meet the minimum criteria for diagnosing autistic disorder, one subtype of ASD.

Previous research on age at diagnosis has focused on external factors such as gender, socioeconomic status, and intellectual disability. Maenner and his colleagues instead looked at patterns of the 12 behavioral features used to diagnose autism according to the DSM-IV-TR.

He and Maureen Durkin, a UW–Madison professor of population health and pediatrics and Waisman Center investigator, studied records of 2,757 8-year- olds from 11 surveillance sites in the nationwide Autism and Developmental Disabilities Monitoring Network, run by the Centers for Disease Control and Prevention (CDC). They found significant associations between the presence of certain behavioral features and age at diagnosis.

"When it comes to the timing of autism identification, the symptoms actually matter quite a bit," Maenner says.

In the study population, the median age at diagnosis (the age by which half the children were diagnosed) was 8.2 years for children with only seven of the listed behavioral features but dropped to just 3.8 years for children with all 12 of the symptoms.

The specific symptoms present also emerged as an important factor. Children with impairments in nonverbal communication, imaginary play, repetitive motor behaviors, and inflexibility in routines were more likely to be diagnosed at a younger age, while those with deficits in conversational ability, idiosyncratic speech and relating to peers were more likely to be diagnosed at a later age.

These patterns make a lot of sense, Maenner says, since they involve behaviors that may arise at different developmental times. The findings suggest that children who show fewer behavioral features or whose autism is characterized by symptoms typically identified at later ages may face more barriers to early diagnosis.

But they also indicate that more screening may not always lead to early diagnoses for everyone.

"Increasing the intensity of screening for autism might lead to identifying more children earlier, but it could also catch a lot of people at later ages who might not have otherwise been identified as having autism," Maenner says.

The new study was supported by grants from the Autism Science Foundation and the CDC. In addition to Maenner and Durkin, co-authors include Laura A. Schieve and Catherine E. Rice of the CDC, Christopher Cunniff of the University of Arizona, Ellen Giarelli of Drexel University, Russell S. Kirby of the University of South Florida, Li-Ching Lee of Johns Hopkins University, Joyce S. Nicholas of the Medical University of South Carolina, and Martha S. Wingate of the University of Alabama at Birmingham.

-- Jill Sakai, 608-262-9772, jasakai@wisc.edu

SIDEBAR:

Highlighting UW research during Autism Awareness Month

As the nation observes April as Autism Awareness Month, the Waisman Center at the University of Wisconsin–Madison is one of only 15 centers in the country dedicated to advancing knowledge about intellectual and developmental disabilities such as autism spectrum disorders (ASD).

Waisman Center researchers and clinicians from many disciplines seek answers to the autism puzzle as they study the causes and consequences of ASD in addition to developing novel approaches to treatment and providing services and support to individuals with ASD and their families.

Some researchers are analyzing public health data to identify factors affecting early diagnosis (see main story). Others are using brain imaging tools to better understand the relationship between white matter, brain development and connectivity in individuals with and without autism. Andy Alexander, professor of medical physics and psychiatry, and Janet Lainhart, professor of psychiatry, recently showed that white matter composition is different in the brains of individuals with autism.

Autism is a complex developmental disorder that impacts social interaction, communication and behavior. The Centers for Disease Control and Prevention identifies 1 in 88 children in the United States as being on the autism spectrum. Autism may be even more common, as results from a recent independent government phone survey of parents suggests the prevalence of autism to be 1 in 50 school-age children.

Matthew Maenner | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>