Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


In autism, age at diagnosis depends on specific symptoms

The age at which a child with autism is diagnosed is related to the particular suite of behavioral symptoms he or she exhibits, new research from the University of Wisconsin–Madison shows.

Certain diagnostic features, including poor nonverbal communication and repetitive behaviors, were associated with earlier identification of an autism spectrum disorder, according to a study in the April issue of the Journal of the American Academy of Child and Adolescent Psychiatry. Displaying more behavioral features was also associated with earlier diagnosis.

"Early diagnosis is one of the major public health goals related to autism," says lead study author Matthew Maenner, a researcher at the UW–Madison Waisman Center. "The earlier you can identify that a child might be having problems, the sooner they can receive support to help them succeed and reach their potential."

But there is a large gap between current research and what is actually happening in schools and communities, Maenner adds. Although research suggests autism can be reliably diagnosed by age 2, the new analysis shows that fewer than half of children with autism are identified in their communities by age 5.

One challenge is that autism spectrum disorders (ASD) are extremely diverse. According to the criteria outlined in the Diagnostic and Statistical Manual of Mental Disorders Fourth Edition – Text Revision (DSM-IV-TR), the standard handbook used for classification of psychiatric disorders, there are more than 600 different symptom combinations that meet the minimum criteria for diagnosing autistic disorder, one subtype of ASD.

Previous research on age at diagnosis has focused on external factors such as gender, socioeconomic status, and intellectual disability. Maenner and his colleagues instead looked at patterns of the 12 behavioral features used to diagnose autism according to the DSM-IV-TR.

He and Maureen Durkin, a UW–Madison professor of population health and pediatrics and Waisman Center investigator, studied records of 2,757 8-year- olds from 11 surveillance sites in the nationwide Autism and Developmental Disabilities Monitoring Network, run by the Centers for Disease Control and Prevention (CDC). They found significant associations between the presence of certain behavioral features and age at diagnosis.

"When it comes to the timing of autism identification, the symptoms actually matter quite a bit," Maenner says.

In the study population, the median age at diagnosis (the age by which half the children were diagnosed) was 8.2 years for children with only seven of the listed behavioral features but dropped to just 3.8 years for children with all 12 of the symptoms.

The specific symptoms present also emerged as an important factor. Children with impairments in nonverbal communication, imaginary play, repetitive motor behaviors, and inflexibility in routines were more likely to be diagnosed at a younger age, while those with deficits in conversational ability, idiosyncratic speech and relating to peers were more likely to be diagnosed at a later age.

These patterns make a lot of sense, Maenner says, since they involve behaviors that may arise at different developmental times. The findings suggest that children who show fewer behavioral features or whose autism is characterized by symptoms typically identified at later ages may face more barriers to early diagnosis.

But they also indicate that more screening may not always lead to early diagnoses for everyone.

"Increasing the intensity of screening for autism might lead to identifying more children earlier, but it could also catch a lot of people at later ages who might not have otherwise been identified as having autism," Maenner says.

The new study was supported by grants from the Autism Science Foundation and the CDC. In addition to Maenner and Durkin, co-authors include Laura A. Schieve and Catherine E. Rice of the CDC, Christopher Cunniff of the University of Arizona, Ellen Giarelli of Drexel University, Russell S. Kirby of the University of South Florida, Li-Ching Lee of Johns Hopkins University, Joyce S. Nicholas of the Medical University of South Carolina, and Martha S. Wingate of the University of Alabama at Birmingham.

-- Jill Sakai, 608-262-9772,


Highlighting UW research during Autism Awareness Month

As the nation observes April as Autism Awareness Month, the Waisman Center at the University of Wisconsin–Madison is one of only 15 centers in the country dedicated to advancing knowledge about intellectual and developmental disabilities such as autism spectrum disorders (ASD).

Waisman Center researchers and clinicians from many disciplines seek answers to the autism puzzle as they study the causes and consequences of ASD in addition to developing novel approaches to treatment and providing services and support to individuals with ASD and their families.

Some researchers are analyzing public health data to identify factors affecting early diagnosis (see main story). Others are using brain imaging tools to better understand the relationship between white matter, brain development and connectivity in individuals with and without autism. Andy Alexander, professor of medical physics and psychiatry, and Janet Lainhart, professor of psychiatry, recently showed that white matter composition is different in the brains of individuals with autism.

Autism is a complex developmental disorder that impacts social interaction, communication and behavior. The Centers for Disease Control and Prevention identifies 1 in 88 children in the United States as being on the autism spectrum. Autism may be even more common, as results from a recent independent government phone survey of parents suggests the prevalence of autism to be 1 in 50 school-age children.

Matthew Maenner | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>