Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Attacking Type 2 Diabetes from a New Direction with Encouraging Results

06.10.2014
A Rutgers researcher is developing a drug aimed at treating the root cause and reversing the disease

Type 2 diabetes affects an estimated 28 million Americans according to the American Diabetes Association, but medications now available only treat symptoms, not the root cause of the disease. New research from Rutgers shows promising evidence that a modified form of a different drug, niclosamide – now used to eliminate intestinal parasites – may hold the key to battling the disease at its source. 


Photo: Nick Romanenko/Rutgers University

Victor Shengkan Jin says it is important to find a drug for type 2 diabetes that attacks the root cause of the disease and not just symptoms.

The study, led by Victor Shengkan Jin, an associate professor of pharmacology at Rutgers Robert Wood Johnson Medical School, has been published online by the journal Nature Medicine.

Jin says it is important to find a suitable medication to correct the cause of the disease as quickly as possible because the only way now known to “cure” the condition involves major gastric bypass surgery. “The surgery can only be performed on highly obese people,” Jin explains, “and carries significant risks that include death, so it is not a realistic solution for most patients.”   

And the number of patients continues to rise. The Centers for Disease Control and Prevention projects that 40 percent of all Americans now alive will develop type 2 diabetes.

Type 2 is the form of diabetes once known as “adult onset,” in which the body produces insulin that ordinarily would keep blood sugar under control, but either it does not produce enough insulin or the body’s ability to use that insulin is degraded. 

According to Jin, a major cause of insulin resistance is the accumulation of excess fat in the cells of the liver, as well as in muscle tissue. The fat disrupts the process where, ordinarily, insulin would cause body tissues to correctly absorb glucose – blood sugar – and use it as a fuel. With nowhere else to go, much of the excess glucose remains in the bloodstream, where in high concentrations it can damage tissues throughout the body – potentially leading to blindness, kidney damage, cardiovascular diseases and other severe health problems.   

“Our goal in this study was to find a safe and practical way of diminishing fat content in the liver. We used mice to perform proof-of-principle experiments in our laboratory,” says Jin. “We succeeded in removing fat, and that in turn improved the animals’ ability to use insulin correctly and reduce blood sugar.”

The modified medication – whose full name is niclosamide ethanolamine salt (NEN) – burned the excess fat in liver cells through a process known as mitochondrial uncoupling. Mitochondria are the microscopic energy source for each cell in the body, and ordinarily – like a well-tuned car engine – they burn fuels including fats and sugars in modest quantities to keep the cells functioning. 

Revving up cells' internal engines to burn away harmful fat

“The cell is like a car and the mitochondria are the engine,” Jin explains. “What we’re doing inside cells is like putting the car’s transmission into neutral by uncoupling it from the transmission. Then you step on the gas so the engine runs full throttle but the car doesn’t move. If too much of the fuel in the cell is fat, you keep burning it until the fuel gauge reaches empty. Without the interference of fat, you hope that sugar will then enter the cell normally.” 

Getting rid of the interference of fat in liver and muscle tissue is the key to restoring the cells’ ability to respond to insulin properly, which would allow the right amount of sugar to be taken up by cells and ultimately reverse the diabetes entirely. That outcome is far from certain, but Jin says the positive changes he saw in the mice are encouraging.

Jin says it also is significant that the drug he used is a modified form of a medication that the FDA already approved for human use. That was a deliberate choice. “We wanted a safe and practical compound to deplete fat inside cells,” says Jin. “We went to the literature and found an approved drug that does in parasitic worms what we wanted to do in liver cells. The modified form of the medication, although itself is not a drug used in humans, has an excellent safety profile in other mammals – so very likely it would have a good safety profile in humans too."

Also, excess fat in the liver is not just a condition of the obese; people of normal weight can develop fatty livers and type 2 diabetes. Jin says this kind of medication, if shown to be effective, could safely treat patients of all weights.

Jin is cofounder of a company called Mito BioPharm, established in 2012, which has the exclusive right to use a patent owned by Rutgers to develop NEN for potential commercial use.

For more information, please contact Rob Forman of Rutgers Media Relations at robert.forman@rutgers.edu or 973-972-7276.

Rob Forman | Eurek Alert!
Further information:
http://news.rutgers.edu/research-news/attacking-type-2-diabetes-new-direction-encouraging-results/20141005#.VDJseWEcTct

Further reports about: Diabetes blood sugar liver liver cells muscle tissue sugar type 2 diabetes

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>