Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ATS, ERS issue official standards for the quantitative assessment of lung structure

The ATS and the European Respiratory Society have issued official standards for the quantitative assessment of lung structure.

"This is the first concise state-of-the-art review of stereological methods for lung morphometry that formulates practical guidelines for the use of advanced imaging techniques," said ATS past president, John Heffner, M.D. "The proposed standards ensure that the three dimensional window into the lung offered by advanced imaging techniques will provide the sharp and clear view necessary for the discovery of new respiratory cures."

The research policy statement was published in the February 15, 2010, issue of the American Journal of Respiratory and Critical Care Medicine.

Lung morphometry—the study of the structure of the lung on the whole-organ level—is of growing importance as new advanced imaging techniques provide investigators glimpses of previously inaccessible areas of lung architecture. The lung is composed of networks of increasingly tiny airways which, if laid out end-to-end, would extend for 1,500 miles, as well as tiny air sacs called alveoli which, if flattened, would have the surface area of a tennis court. However, these tremendously complex and intricate structures comprise only 10 to 15 percent of the volume of an inflated lung. The rest is air.

"When I look into a microscope at about 200 times magnification and observe a histological section of human lung tissue, I see kind of a network of thin bands that I suspect to represent the walls between airspaces, the empty-looking areas; and some of the network bands mysteriously have free ends," explained Ewald R. Weibel, M.D., D.Sc., who is senior author of the standards and professor emeritus at the Institute for Anatomy at the University of Berne in Switzerland.

New advanced lung imaging techniques offer genuine three-dimensional views of the lung, and because of their ready availability, these techniques provide investigators with tremendous opportunities to look into previously inaccessible crevasses of the whole lung and examine spatial displays of the relationship between tissues, cells, organelles, alveoli, airways and blood vessels. But if these imaging techniques are misapplied they can promote misinterpretations of findings and confuse investigators in the field. Correctly interpreting these images is of critical importance to understanding the exact structures of airways and alveoli.

"Stereology now tells us that the length of this two-dimensional contour of air spaces images (per unit area of section) is proportional to the surface area of the three-dimensional airspaces (per unit volume of lung tissue)," said Dr. Weibel. "This allows the alveolar surface, functionally the gas exchange surface, to be measured on thin sections with great precision. But because the relationship is a statistical one, there are strict rules that must be observed if such an indirect estimate of a three-dimensional surface area is to be accurate. These standards explain these rules."

"The standards also promote the quality of basic and translational lung research, particularly because the potential use of the methodological standards in the modern imaging modalities—such as high-resolution CT, MRI and PET—are outlined," Dr. Weibel continued. "If adopted by the research community, the standards should also improve the efficiency and accuracy of studies and, most importantly, make results obtained by different groups comparable, thus facilitating interdisciplinary and international collaboration."

Link to original article:

Link to original podcast:

Keely Savoie | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>