Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


An Atomic-level Look at an HIV Accomplice

Since the discovery in 2007 that a component of human semen called SEVI boosts infectivity of the virus that causes AIDS, researchers have been trying to learn more about SEVI and how it works, in hopes of thwarting its infection-promoting activity.

Now, scientists at the University of Michigan have determined the atomic-level, three-dimensional structure of a SEVI precursor known as PAP248-286 and discovered how it damages cell membranes to make them more vulnerable to infection with HIV. The work is described in two new papers.

The most recent, describing the structure, was published online Nov. 17 in the Journal of the American Chemical Society. The paper describing how PAP248-286 interacts with cell membranes appeared in the Nov. 4 issue of Biophysical Journal.

PAP248-286 is a peptide---a chain of amino acids not long enough to be considered a protein. Individual PAP248-286 peptides have a tendency to clump together to form amyloid fibers called SEVI (semen enhancer of viral infection). Amyloid fibers are of great interest because they are the calling cards of many neurodegenerative diseases, such as Alzheimer's and Parkinson's, and aging-related diseases like type-2 diabetes. Using NMR (nuclear magnetic resonance) spectroscopy, a technique that not only yields atomic-level details of a molecule's structure, but also shows how the molecule nestles into the membrane with which it interacts, researcher Ayyalusamy Ramamoorthy and coworkers found that the structure of PAP248-286 is unlike that of most other amyloid-forming peptides and proteins.

In solution, SEVI is completely unstructured or has no definite shape and is therefore ineffective. On the other hand, "when bound to the membrane, it's in a spaghetti-like arrangement---a disorganized, loose coil," said Ramamoorthy, a professor of chemistry and of biophysics. In contrast, most other amyloid proteins assume a more ordered, helical configuration. Also unlike other amyloid peptides, SEVI does not penetrate deep into the greasy region of the cell membrane, but is located near the surface. Ramamoorthy and coauthors believe the spread-out, disordered configuration and its location in the cell membrane may explain the ability of SEVI fibers to enhance HIV infection, as the arrangement provides more surface area with which the virus can interact.

A key finding of the second study is that PAP248-286 "shocks" the membrane, inducing a structural change---a kind of dimple that allows HIV to attach to and enter the cell.

Next, Ramamoorthy and colleagues hope to discern more structural details of PAP248-286 and SEVI. They also plan to screen antioxidant compounds such as green tea extract, curcumin and resveratrol (found in red wine) to see if such compounds are capable of blocking SEVI's HIV-enhancing activity.

Ramamoorthy's coauthors on the Journal of the American Chemical Society paper are graduate student Ravi Nanga, post-doctoral fellows Jeffrey Brender and Nataliya Popovych and NMR specialist Subramanian Vivekanandan. His coauthors on the Biophysical Journal paper are Brender, graduate student Kevin Hartman, former post-doctoral fellow Lindsey Gottler, former graduate student Marchello Cavitt and biophysics undergraduate student Daniel Youngstrom.

This research was supported by funds from the National Institutes of Health.

For more information:
Ayyalusamy Ramamoorthy:

Journal of the American Chemical Society paper, NMR Structure in a Membrane Environment Reveals Putative Amyloidogenic Regions of the SEVI Precursor Peptide PAP248-286

Biophysical Journal paper, Helical Conformation of the SEVI Precursor Peptide PAP248-286, a Dramatic Enhancer of HIV Infectivity, Promotes Lipid Aggregation and Fusion

Nancy Ross-Flanigan | Newswise Science News
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>