Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrocytes control the generation of new neurons from neural stem cells

24.08.2012
Researchers from the Laboratory of astrocyte biology and CNS regeneration headed by Prof. Milos Pekny just published a research article in a prestigious journal Stem Cells on the molecular mechanism that controls generation of new neurons in the brain.

Astrocytes are cells that have many functions in the central nervous system, such as the control of neuronal synapses, blood flow, or the brain’s response to neurotrauma or stroke.

Reduces brain tissue damage

Prof. Pekny’s laboratory together with collaborators have earlier demonstrated that astrocytes reduce the brain tissue damage after stroke and that the integration of transplanted neural stem cells can be largely improved by modulating the activity of astrocytes.
Generation of new neurons

In their current study, the Sahlgrenska Academy researchers show how astrocytes control the generation of new neurons in the brain. An important contribution to this project came from Åbo Academy, one of Sahlgrenska’s traditional collaborative partners.

“In the brain, astrocytes control how many new neurons are formed from neural stem cells and survive to integrate into the existing neuronal networks. Astrocytes do this by secreting specific molecules but also by much less understood direct cell-cell interactions with stem cells”, says Prof. Milos Pekny.
Important regulator

“Astrocytes are in physical contact with neural stem cells and we have shown that they signal through the Notch pathway to stem cells to keep the birth rate of new neurons low. We have also shown that the intermediate filament system of astrocytes is an important regulator of this process. It seems that astrocyte intermediate filaments can be used as a target to increase the birthrate of new neurons.”
Target for future therapies

“We are starting to understand some of the cellular and molecular mechanisms behind the control of neurogenesis. Neurogenesis is one of the components of brain plasticity, which plays a role in the learning process as well as in the recovery after brain injury or stroke. This work helps us to understand how plasticity and regenerative response can be therapeutically promoted in the future”, says Prof. Milos Pekny.

The article “Astrocytes Negatively Regulate Neurogenesis through the Jagged1-Mediated Notch Pathway” is published in Stem Cells.

Helena Aaberg | idw
Further information:
http://bit.ly/NCJEdI

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>