Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aspirin, Tylenol May Decrease Effectiveness of Vaccines

03.12.2009
Mizzou scientists discover aspirin and Tylenol block enzymes that could inhibit vaccines

With flu season in full swing and the threat of H1N1 looming, demand for vaccines is at an all-time high. Although those vaccines are expected to be effective, University of Missouri researchers have found further evidence that some over-the-counter drugs, such as aspirin and Tylenol, that inhibit certain enzymes could impact the effectiveness of vaccines.

“If you’re taking aspirin regularly, which many people do for cardiovascular treatment, or acetaminophen (Tylenol) for pain and fever and get a flu shot, there is a good chance that you won’t have a good antibody response,” said Charles Brown, associate professor of veterinary pathobiology in the MU College of Veterinary Medicine. “These drugs block the enzyme COX-1, which works in tissues throughout the body. We have found that if you block COX-1, you might be decreasing the amount of antibodies your body is producing, and you need high amounts of antibodies to be protected.”

COX enzymes play important roles in the regulation of the immune system. The role of these enzymes is not yet understood completely, and medications that inhibit them may have adverse side effects. Recent research has discovered that drugs that inhibit COX enzymes, such as COX-2, have an impact on the effectiveness of vaccines. Brown’s research indicates that inhibiting COX-1, which is present in tissues throughout the body, such as the brain or kidneys, could also impact vaccines’ effectiveness.

These MU researchers also are studying the regulation of inflammation and how that leads to the development or prevention of disease. Many diseases, such as arthritis, cardiovascular disease and diabetes, are all chronic inflammatory diseases. Contrary to previous beliefs, inflammation is generally a good thing that helps protect individuals from infection. Many of the non-steroidal drugs that treat inflammatory conditions reduce antibody responses, which are necessary for treating infections.

“So far, we’ve tested this on an animal model and have found that these non-steroidal drugs do inhibit vaccines, but the next step is to test it on humans,” Brown said. “If our results show that COX-1 inhibitors affect vaccines, the takeaway might be to not take drugs, such as aspirin, Tylenol and ibuprofen, for a couple weeks before and after you get a vaccine.”

Brown’s research, “Cycloozygenase-1 Orchestrates Germinal Center Formation and Antibody Class-Switch via Regulation of IL-17,” has been published in The Journal of Immunology.

Kelsey Jackson | EurekAlert!
Further information:
http://www.missouri.edu
http://munews.missouri.edu/news-releases/2009/1201-aspirin-tylenol-may-decrease-effectiveness-of-vaccines/

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>