Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aspirin intake may stop growth of vestibular schwannomas/acoustic neuromas

24.01.2014
Findings described in the February issue of the journal Otology and Neurotology

Researchers from Massachusetts Eye and Ear, Harvard Medical School, Massachusetts Institute of Technology and Massachusetts General Hospital have demonstrated, for the first time, that aspirin intake correlates with halted growth of vestibular schwannomas (also known as acoustic neuromas), a sometimes lethal intracranial tumor that typically causes hearing loss and tinnitus.

Motivated by experiments in the Molecular Neurotology Laboratory at Mass. Eye and Ear involving human tumor specimens, the researchers performed a retrospective analysis of over 600 people diagnosed with vestibular schwannoma at Mass. Eye and Ear. Their research suggests the potential therapeutic role of aspirin in inhibiting tumor growth and motivates a clinical prospective study to assess efficacy of this well-tolerated anti-inflammatory medication in preventing growth of these intracranial tumors.

"Currently, there are no FDA-approved drug therapies to treat these tumors, which are the most common tumors of the cerebellopontine angle and the fourth most common intracranial tumors," explains Konstantina Stankovic, M.D., Ph.D., Mass. Eye and Ear clinican-researcher and assistant professor of otology andlaryngology, Harvard Medical School, who led the study. "Current options for management of growing vestibular schwannomas include surgery (via craniotomy) or radiation therapy, both of which are associated with potentially serious complications."

The findings, which are described in the February issue of the journal Otology and Neurotology, were based on a retrospective series of 689 people, 347 of whom were followed with multiple magnetic resonance imaging MRI scans (50.3%). The main outcome measures were patient use of aspirin and rate of vestibular schwannoma growth measured by changes in the largest tumor dimension as noted on serial MRIs. A significant inverse association was found among aspirin users and vestibular schwannoma growth (odds ratio: 0.50, 95 percent confidence interval: 0.29-0.85), which was not confounded by age or gender.

"Our results suggest a potential therapeutic role of aspirin in inhibiting vestibular schwannoma growth," said Dr. Stankovic, who is an otologic surgeon and researcher at Mass. Eye and Ear, Assistant Professor of Otology and Laryngology, Harvard Medical School (HMS), and member of the faculty of Harvard's Program in Speech and Hearing Bioscience and Technology.

This work was funded by National Institute on Deafness and Other Communication Disorders grants T32 DC00038, K08DC010419 and by the Bertarelli Foundation. A full list of authors is available in the paper.

About Massachusetts Eye and Ear

Mass. Eye and Ear clinicians and scientists are driven by a mission to find cures for blindness, deafness and diseases of the head and neck. After uniting with Schepens Eye Research Institute Mass. Eye and Ear in Boston became the world's largest vision and hearing research center, offering hope and healing to patients everywhere through discovery and innovation. Mass.

Eye and Ear is a Harvard Medical School teaching hospital and trains future medical leaders in ophthalmology and otolaryngology, through residency as well as clinical and research fellowships. Internationally acclaimed since its founding in 1824, Mass. Eye and Ear employs full-time, board-certified physicians who offer high-quality and affordable specialty care that ranges from the routine to the very complex. U.S. News & World Report's "Best Hospitals Survey" has consistently ranked the Mass. Eye and Ear Departments of Otolaryngology and Ophthalmology one of the top hospitals in the nation.

Mary Leach | EurekAlert!
Further information:
http://www.meei.harvard.edu

More articles from Health and Medicine:

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

nachricht Camouflage apples
22.03.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>