Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial Sweetener a Potential Treatment for Parkinson's Disease

18.06.2013
TAU researcher says mannitol could prevent aggregation of toxic proteins in the brain
Mannitol, a sugar alcohol produced by fungi, bacteria, and algae, is a common component of sugar-free gum and candy. The sweetener is also used in the medical field — it's approved by the FDA as a diuretic to flush out excess fluids and used during surgery as a substance that opens the blood/brain barrier to ease the passage of other drugs.

Now Profs. Ehud Gazit and Daniel Segal of Tel Aviv University's Department of Molecular Microbiology and Biotechnology and the Sagol School of Neuroscience, along with their colleague Dr. Ronit Shaltiel-Karyo and PhD candidate Moran Frenkel-Pinter, have found that mannitol also prevents clumps of the protein á-synuclein from forming in the brain — a process that is characteristic of Parkinson's disease.

These results, published in the Journal of Biological Chemistry and presented at the Drosophila Conference in Washington, DC in April, suggest that this artificial sweetener could be a novel therapy for the treatment of Parkinson's and other neurodegenerative diseases. The research was funded by a grant from the Parkinson's Disease Foundation and supported in part by the Lord Alliance Family Trust.

Seeing a significant difference

After identifying the structural characteristics that facilitate the development of clumps of á-synuclein, the researchers began to hunt for a compound that could inhibit the proteins' ability to bind together. In the lab, they found that mannitol was among the most effective agents in preventing aggregation of the protein in test tubes. The benefit of this substance is that it is already approved for use in a variety of clinical interventions, Prof. Segal says.

Next, to test the capabilities of mannitol in the living brain, the researchers turned to transgenic fruit flies engineered to carry the human gene for á-synuclein. To study fly movement, they used a test called the "climbing assay," in which the ability of flies to climb the walls of a test tube indicates their locomotive capability. In the initial experimental period, 72 percent of normal flies were able to climb up the test tube, compared to only 38 percent of the genetically-altered flies.

The researchers then added mannitol to the food of the genetically-altered flies for a period of 27 days and repeated the experiment. This time, 70 percent of the mutated flies could climb up the test tube. In addition, the researchers observed a 70 percent reduction in aggregates of á-synuclein in mutated flies that had been fed mannitol, compared to those that had not.

These findings were confirmed by a second study which measured the impact of mannitol on mice engineered to produce human á-synuclein, developed by Dr. Eliezer Masliah of the University of San Diego. After four months, the researchers found that the mice injected with mannitol also showed a dramatic reduction of á-synuclein in the brain.

Delivering therapeutic compounds to the brain

The researchers now plan to re-examine the structure of the mannitol compound and introduce modifications to optimize its effectiveness. Further experiments on animal models, including behavioral testing, whose disease development mimics more closely the development of Parkinson's in humans is needed, Prof. Segal says.

For the time being, mannitol may be used in combination with other medications that have been developed to treat Parkinson's but which have proven ineffective in breaking through the blood/brain barrier, says Prof. Segal. These medications may be able to "piggy-back" on mannitol's ability to open this barrier into the brain.

Although the results look promising, it is still not advisable for Parkinson's patients to begin ingesting mannitol in large quantities, Prof. Segal cautions. More testing must be done to determine dosages that would be both effective and safe.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>