Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial pump effectively backs up failing hearts

06.04.2009
Patients with severe heart failure can be bridged to eventual transplant by a new, smaller and lighter implantable heart pump, according to a just-completed study of the device. Results of this third-generation heart assist device were reported at the 58th annual meeting of the American College of Cardiology on March 30.

The device, called a left ventricular assist device (LVAD), is the latest generation of heart assist devices. The LVAD was tested at five main sites: Washington University School of Medicine in St. Louis, the University of Minnesota, Mt. Sinai School of Medicine, Inova Fairfax Hospital and the University of Pittsburgh.

"LVADs have allowed us to support patients until they can receive a heart transplant, so they are called a bridge to transplant," says Gregory Ewald, M.D., a Washington University cardiologist at Barnes-Jewish Hospital and medical director of the Heart Failure, Cardiac Transplantation and Total Artificial Heart Program. "For patients whose hearts are failing and are awaiting transplantation, these devices can be lifesavers. Washington University is the only medical center in the region where patients can receive these devices at this time."

In addition to Ewald, associate professor of medicine, lead investigators in the trial included Nader Moazami, M.D., associate professor of surgery and surgical director of the Cardiac Transplantation and Total Artificial Heart Program at Washington University, and Andrew Boyle, M.D., associate professor of medicine at the University of Minnesota and medical director of Heart Failure, Cardiac Transplantation and Mechanical Circulatory Support. Boyle presented the findings at the ACC meeting.

An LVAD is implanted inside the chest cavity near the heart and is connected to the heart's left ventricle (pumping chamber). It assists the patient's weakened or damaged ventricle in pumping blood through the body. By restoring a normal blood flow, the device improves patients' health. Because it is powered by portable battery packs, patients usually go home while they wait for a heart transplant.

The LVAD used in this study, the VentrAssist, is termed a third-generation heart assist device. Measuring 2.5-inches across and weighing 10 ounces, the pump is considered an improvement over earlier devices because its size and light weight make it suitable for small adults and children. In addition, its pumping mechanism has no contacting parts for improved durability.

Patients who received the LVAD in the study were approved and listed for cardiac transplantation. The study considered the device successful if a patient survived until heart transplantation or survived at least 180 days after the device was implanted and remained qualified for heart transplantation. Eighty-five percent of patients met this measure of success.

Out of 98 patients who received the device, 60 were transplanted, 19 continued to be supported with the device and 19 died. The median time on LVAD support was 131 days. Adverse events reported during the trial included stroke and bleeding, and the number and type of adverse events was similar to other LVADs but better than that of first-generation VAD devices.

Answering standardized questionnaires for patients with heart failure, they reported a significantly improved quality of life after receiving the device, indicating that their heart failure was less apt to interfere with everyday activities such as housework, hobbies or sleeping or to affect their mood, ability to concentrate or energy level.

"Before implantation of the device, 80 percent of these patients were rated class four on the New York Heart Association scale — they were short of breath at rest," Ewald says. "But by six months, 84 percent were in class one or two, meaning their heart failure symptoms were minimal or mild. All of them were able to go home with the device, and that allowed them to rehabilitate themselves — their nutrition improved and they were in better shape, making them better candidates for heart transplantation."

The VentrAssist device pumps blood in a continuous flow in contrast to earlier heart assist pumps that pumped blood in pulses. It contains a spinning rotor that is suspended by blood within the pump housing and magnetically rotated. Since the impeller blades don't touch any part of the pump, the chance of damage to blood cells is lessened. With only one moving part, the pump is resistant to wear.

The positive results from this clinical study mean the VentrAssist will be submitted to the U.S. Food and Drug Administration for approval for use as a bridge to heart transplant. In the interim, Washington University School of Medicine will continue to provide the device to patients as part of a clinical trial.

Doctors here are continuing to enroll patients in a trial of the device as a bridge to transplantation, and they are also testing the device as "destination therapy" to see if the device can function as an alternative to heart transplant by permanently assisting failing hearts. For information about enrolling in the trials call 314-454-7687.

Boyle AJ, Moazami N, John R, Ewald GA, Anyanwu AC, Pinney SP, Desai SS, Burton NA, Teuteberg JJ, Kormos RL, Ascheim DV, Gelijns AC, Parides MK, Joyce LD. The VentrAssist U.S. Pivotal Bridge to Cardiac Transplantation Trial. Presented at 58th annual meeting of the American College of Cardiology, March 30, 2009.

VentrAssist is made by Ventracor. Ewald, Moazami and Boyle report no financial interest in Ventracor.

Funding from Ventracor supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>