Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial pump effectively backs up failing hearts

06.04.2009
Patients with severe heart failure can be bridged to eventual transplant by a new, smaller and lighter implantable heart pump, according to a just-completed study of the device. Results of this third-generation heart assist device were reported at the 58th annual meeting of the American College of Cardiology on March 30.

The device, called a left ventricular assist device (LVAD), is the latest generation of heart assist devices. The LVAD was tested at five main sites: Washington University School of Medicine in St. Louis, the University of Minnesota, Mt. Sinai School of Medicine, Inova Fairfax Hospital and the University of Pittsburgh.

"LVADs have allowed us to support patients until they can receive a heart transplant, so they are called a bridge to transplant," says Gregory Ewald, M.D., a Washington University cardiologist at Barnes-Jewish Hospital and medical director of the Heart Failure, Cardiac Transplantation and Total Artificial Heart Program. "For patients whose hearts are failing and are awaiting transplantation, these devices can be lifesavers. Washington University is the only medical center in the region where patients can receive these devices at this time."

In addition to Ewald, associate professor of medicine, lead investigators in the trial included Nader Moazami, M.D., associate professor of surgery and surgical director of the Cardiac Transplantation and Total Artificial Heart Program at Washington University, and Andrew Boyle, M.D., associate professor of medicine at the University of Minnesota and medical director of Heart Failure, Cardiac Transplantation and Mechanical Circulatory Support. Boyle presented the findings at the ACC meeting.

An LVAD is implanted inside the chest cavity near the heart and is connected to the heart's left ventricle (pumping chamber). It assists the patient's weakened or damaged ventricle in pumping blood through the body. By restoring a normal blood flow, the device improves patients' health. Because it is powered by portable battery packs, patients usually go home while they wait for a heart transplant.

The LVAD used in this study, the VentrAssist, is termed a third-generation heart assist device. Measuring 2.5-inches across and weighing 10 ounces, the pump is considered an improvement over earlier devices because its size and light weight make it suitable for small adults and children. In addition, its pumping mechanism has no contacting parts for improved durability.

Patients who received the LVAD in the study were approved and listed for cardiac transplantation. The study considered the device successful if a patient survived until heart transplantation or survived at least 180 days after the device was implanted and remained qualified for heart transplantation. Eighty-five percent of patients met this measure of success.

Out of 98 patients who received the device, 60 were transplanted, 19 continued to be supported with the device and 19 died. The median time on LVAD support was 131 days. Adverse events reported during the trial included stroke and bleeding, and the number and type of adverse events was similar to other LVADs but better than that of first-generation VAD devices.

Answering standardized questionnaires for patients with heart failure, they reported a significantly improved quality of life after receiving the device, indicating that their heart failure was less apt to interfere with everyday activities such as housework, hobbies or sleeping or to affect their mood, ability to concentrate or energy level.

"Before implantation of the device, 80 percent of these patients were rated class four on the New York Heart Association scale — they were short of breath at rest," Ewald says. "But by six months, 84 percent were in class one or two, meaning their heart failure symptoms were minimal or mild. All of them were able to go home with the device, and that allowed them to rehabilitate themselves — their nutrition improved and they were in better shape, making them better candidates for heart transplantation."

The VentrAssist device pumps blood in a continuous flow in contrast to earlier heart assist pumps that pumped blood in pulses. It contains a spinning rotor that is suspended by blood within the pump housing and magnetically rotated. Since the impeller blades don't touch any part of the pump, the chance of damage to blood cells is lessened. With only one moving part, the pump is resistant to wear.

The positive results from this clinical study mean the VentrAssist will be submitted to the U.S. Food and Drug Administration for approval for use as a bridge to heart transplant. In the interim, Washington University School of Medicine will continue to provide the device to patients as part of a clinical trial.

Doctors here are continuing to enroll patients in a trial of the device as a bridge to transplantation, and they are also testing the device as "destination therapy" to see if the device can function as an alternative to heart transplant by permanently assisting failing hearts. For information about enrolling in the trials call 314-454-7687.

Boyle AJ, Moazami N, John R, Ewald GA, Anyanwu AC, Pinney SP, Desai SS, Burton NA, Teuteberg JJ, Kormos RL, Ascheim DV, Gelijns AC, Parides MK, Joyce LD. The VentrAssist U.S. Pivotal Bridge to Cardiac Transplantation Trial. Presented at 58th annual meeting of the American College of Cardiology, March 30, 2009.

VentrAssist is made by Ventracor. Ewald, Moazami and Boyle report no financial interest in Ventracor.

Funding from Ventracor supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>