Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial foot recycles energy for easier walking

17.02.2010
An artificial foot that recycles energy otherwise wasted in between steps could make it easier for amputees to walk, its developers say.

"For amputees, what they experience when they're trying to walk normally is what I would experience if I were carrying an extra 30 pounds," said Art Kuo, professor in the University of Michigan departments of Biomedical Engineering and Mechanical Engineering.

Compared with conventional prosthetic feet, the new prototype device significantly cuts the energy spent per step.

A paper about the device is published in the Feb. 17 edition of in the journal PLoS ONE. The foot was created by Kuo and Steve Collins, who was then a U-M graduate student. Now Collins is an associate research fellow at Delft University of Technology in the Netherlands.

The human walking gait naturally wastes energy as each foot collides with the ground in between steps.

A typical prosthesis doesn't reproduce the force a living ankle exerts to push off of the ground. As a result, test subjects spent 23 percent more energy walking with a conventional prosthetic foot, compared with walking naturally. To test how stepping with their device compared with normal walking, the engineers conducted their experiments with non-amputees wearing a rigid boot and prosthetic simulator.

In their energy-recycling foot, the engineers put the wasted walking energy to work enhancing the power of ankle push-off. The foot naturally captures the dissipated energy. A microcontroller tells the foot to return the energy to the system at precisely the right time.

Based on metabolic rate measurements, the test subjects spent 14 percent more energy walking in energy-recycling artificial foot than they did walking naturally. That's a significant decrease from the 23 percent more energy they used in the conventional prosthetic foot, Kuo says.

"We know there's an energy penalty in using an artificial foot," Kuo said. "We're almost cutting that penalty in half."

He explained how this invention differs from current technologies.

"All prosthetic feet store and return energy, but they don't give you a choice about when and how. They just return it whenever they want," Kuo said. "This is the first device to release the energy in the right way to supplement push-off, and to do so without an external power source."

Other devices that boost push-off power use motors and require large batteries.

Because the energy-recycling foot takes advantage of power that would otherwise be lost, it uses less than 1 Watt of electricity through a small, portable battery.

"Individuals with lower limb amputations, such as veterans of the conflicts in Iraq and Afghanistan or patients suffering from diabetes, often find walking a difficult task. Our new design may restore function and reduce effort for these users," Collins said. "With further progress, robotic limbs may yet beat their biological forerunners."

This paper demonstrates that the engineers' idea works. They are now testing the foot on amputees at the Seattle Veterans Affairs Medical Center. Commercial devices based on the technology are under development by an Ann Arbor company.

The paper is called "Recycling Energy to Restore Impaired Ankle Function during Human Walking."

This research was funded by the National Institutes of Health and the Department of Veterans Affairs.

For more information:
Full text of paper: http://dx.plos.org/10.1371/journal.pone.0009307
Art Kuo: http://www-personal.umich.edu/~artkuo/
Steve Collins: http://www-personal.umich.edu/~shc/
Michigan Engineering: The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Find out more at http://www.engin.umich.edu/

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu
http://www.engin.umich.edu/

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>