Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Arm in plaster changes brain in 16 days

People who only use their left hand after breaking their right arm already exhibit significant anatomical changes in particular areas of the brain within 16 days.

Researchers from the University of Zurich have demonstrated that the thickness of the left brain areas is reduced while the areas on the right hand side that compensate for the injury increase in size. The fine motor skills of the compensating hand also improve considerably. The results of the study are significant for the treatment of strokes, in which the immobilization of an arm or a leg is central.

What happens in the brain of right-handed people if their dominant hand is immobile for two weeks? This is the question addressed in the latest study led by Professor Lutz Jäncke and the Trauma Surgery Department at Zurich University Hospital. For the study, ten right-handed people with broken upper right arms were examined. Because of the plaster or sling, the test people’s right hands were restricted to little or no movement for fourteen days.

Therefore they used their left hands for daily activities such as eating, brushing their teeth or writing. The participants were given two MRI brain scans: one 48 hours after injury and a second 16 days after the arm was immobilized. Based on the scans, the neuropsychologists analyzed the test people’s gray and white brain matter. They calculated the thickness of the cerebral cortex and the values of the corticospinal tract and measured the fine motor skills of the left, free-moving hand.

Rearrangement of the brain matter
“In a short space of time, the immobilization of the right hand changed the sensory and motor brain areas,” explains the author of the study, Nicki Langer. The gray and white brain matter of the motor areas in the right brain hemisphere that control the immobilized right hand decreases while the brain matter of the right motor areas that control the inferior left hand grows. “It is interesting that the fine motor skills of the left hand improved considerably during the 16 days the right hand was restricted,” adds neuropsychologist Lutz Jäncke. The improvement in motor performance correlates with the anatomical change: the better the fine motor skills of the left hand, the more brain substance there is in the right motor area. And: the better the fine motor skills of the left hand, the less brain matter there is in the left motor area.
Therapeutic benefits
The results of the study are interesting for the treatment of strokes. In a therapeutic approach, for instance, the undamaged arm can be immobilized to strengthen the affected arm and stimulate the corresponding brain area for new skills. “Our study shows that this kind of therapy has both positive and negative effects,” says Langer. “Our study also supports the current trauma surgery guidelines, which state that an injured arm or leg should only be immobilized for as short a period as possible, but as long as necessary,” concludes Langer.
N. Langer, J. Hänggi, N.A. Müller, H.P. Simmen, and L. Jäncke. Effects of limb immobilization on brain plasticity. Neurology. January 17, 2012. doi: 10.1212/WNL.0b013e31823fcd9c
Nicki Langer
Department of Psychology / Neuropsychology
University of Zurich
Tel. +41 44 635 73 96
Professor Lutz Jäncke
Department of Psychology / Neuropsychology
University of Zurich
Tel. +41 44 635 74 00

Nathalie Huber | idw
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>