Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arm in plaster changes brain in 16 days

17.01.2012
People who only use their left hand after breaking their right arm already exhibit significant anatomical changes in particular areas of the brain within 16 days.

Researchers from the University of Zurich have demonstrated that the thickness of the left brain areas is reduced while the areas on the right hand side that compensate for the injury increase in size. The fine motor skills of the compensating hand also improve considerably. The results of the study are significant for the treatment of strokes, in which the immobilization of an arm or a leg is central.

What happens in the brain of right-handed people if their dominant hand is immobile for two weeks? This is the question addressed in the latest study led by Professor Lutz Jäncke and the Trauma Surgery Department at Zurich University Hospital. For the study, ten right-handed people with broken upper right arms were examined. Because of the plaster or sling, the test people’s right hands were restricted to little or no movement for fourteen days.

Therefore they used their left hands for daily activities such as eating, brushing their teeth or writing. The participants were given two MRI brain scans: one 48 hours after injury and a second 16 days after the arm was immobilized. Based on the scans, the neuropsychologists analyzed the test people’s gray and white brain matter. They calculated the thickness of the cerebral cortex and the values of the corticospinal tract and measured the fine motor skills of the left, free-moving hand.

Rearrangement of the brain matter
“In a short space of time, the immobilization of the right hand changed the sensory and motor brain areas,” explains the author of the study, Nicki Langer. The gray and white brain matter of the motor areas in the right brain hemisphere that control the immobilized right hand decreases while the brain matter of the right motor areas that control the inferior left hand grows. “It is interesting that the fine motor skills of the left hand improved considerably during the 16 days the right hand was restricted,” adds neuropsychologist Lutz Jäncke. The improvement in motor performance correlates with the anatomical change: the better the fine motor skills of the left hand, the more brain substance there is in the right motor area. And: the better the fine motor skills of the left hand, the less brain matter there is in the left motor area.
Therapeutic benefits
The results of the study are interesting for the treatment of strokes. In a therapeutic approach, for instance, the undamaged arm can be immobilized to strengthen the affected arm and stimulate the corresponding brain area for new skills. “Our study shows that this kind of therapy has both positive and negative effects,” says Langer. “Our study also supports the current trauma surgery guidelines, which state that an injured arm or leg should only be immobilized for as short a period as possible, but as long as necessary,” concludes Langer.
Literature:
N. Langer, J. Hänggi, N.A. Müller, H.P. Simmen, and L. Jäncke. Effects of limb immobilization on brain plasticity. Neurology. January 17, 2012. doi: 10.1212/WNL.0b013e31823fcd9c
Contacts:
Nicki Langer
Department of Psychology / Neuropsychology
University of Zurich
Tel. +41 44 635 73 96
Email: n.langer@psychologie.uzh.ch
Professor Lutz Jäncke
Department of Psychology / Neuropsychology
University of Zurich
Tel. +41 44 635 74 00
Email: l.jaencke@psychologie.uzh.ch

Nathalie Huber | idw
Further information:
http://www.uzh.ch

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>