Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arm in plaster changes brain in 16 days

17.01.2012
People who only use their left hand after breaking their right arm already exhibit significant anatomical changes in particular areas of the brain within 16 days.

Researchers from the University of Zurich have demonstrated that the thickness of the left brain areas is reduced while the areas on the right hand side that compensate for the injury increase in size. The fine motor skills of the compensating hand also improve considerably. The results of the study are significant for the treatment of strokes, in which the immobilization of an arm or a leg is central.

What happens in the brain of right-handed people if their dominant hand is immobile for two weeks? This is the question addressed in the latest study led by Professor Lutz Jäncke and the Trauma Surgery Department at Zurich University Hospital. For the study, ten right-handed people with broken upper right arms were examined. Because of the plaster or sling, the test people’s right hands were restricted to little or no movement for fourteen days.

Therefore they used their left hands for daily activities such as eating, brushing their teeth or writing. The participants were given two MRI brain scans: one 48 hours after injury and a second 16 days after the arm was immobilized. Based on the scans, the neuropsychologists analyzed the test people’s gray and white brain matter. They calculated the thickness of the cerebral cortex and the values of the corticospinal tract and measured the fine motor skills of the left, free-moving hand.

Rearrangement of the brain matter
“In a short space of time, the immobilization of the right hand changed the sensory and motor brain areas,” explains the author of the study, Nicki Langer. The gray and white brain matter of the motor areas in the right brain hemisphere that control the immobilized right hand decreases while the brain matter of the right motor areas that control the inferior left hand grows. “It is interesting that the fine motor skills of the left hand improved considerably during the 16 days the right hand was restricted,” adds neuropsychologist Lutz Jäncke. The improvement in motor performance correlates with the anatomical change: the better the fine motor skills of the left hand, the more brain substance there is in the right motor area. And: the better the fine motor skills of the left hand, the less brain matter there is in the left motor area.
Therapeutic benefits
The results of the study are interesting for the treatment of strokes. In a therapeutic approach, for instance, the undamaged arm can be immobilized to strengthen the affected arm and stimulate the corresponding brain area for new skills. “Our study shows that this kind of therapy has both positive and negative effects,” says Langer. “Our study also supports the current trauma surgery guidelines, which state that an injured arm or leg should only be immobilized for as short a period as possible, but as long as necessary,” concludes Langer.
Literature:
N. Langer, J. Hänggi, N.A. Müller, H.P. Simmen, and L. Jäncke. Effects of limb immobilization on brain plasticity. Neurology. January 17, 2012. doi: 10.1212/WNL.0b013e31823fcd9c
Contacts:
Nicki Langer
Department of Psychology / Neuropsychology
University of Zurich
Tel. +41 44 635 73 96
Email: n.langer@psychologie.uzh.ch
Professor Lutz Jäncke
Department of Psychology / Neuropsychology
University of Zurich
Tel. +41 44 635 74 00
Email: l.jaencke@psychologie.uzh.ch

Nathalie Huber | idw
Further information:
http://www.uzh.ch

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>