Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New arenavirus discovered as cause of hemorrhagic fever outbreak in South Africa and Zambia

First Old World arenavirus associated with hemorrhagic fever identified in nearly four decades

Scientists at Columbia University's Mailman School of Public Health, the South African National Institute for Communicable Diseases of National Health Laboratory Service (NICD-NHLS), the U.S. Centers for Disease Control and Prevention, and Roche's 454 Life Sciences Corporation have discovered the new virus responsible for a highly fatal hemorrhagic fever outbreak in Zambia and South Africa in late 2008.

It is the first new hemorrhagic fever-associated arenavirus from Africa identified in nearly four decades. A detailed genetic analysis of this novel arenavirus, named Lujo virus, after the sites of the outbreak (Lusaka, Zambia, and Johannesburg, South Africa) is published online in PLoS Pathogens (

The previously unknown arenavirus, which was identified using genetic extracts of blood and liver from the victims and through unbiased high-throughput sequencing, is distantly related to Lassa virus and Lymphocytic choriomeningitis virus (LCMV). Characterization of the novel virus confirms the utility of unbiased high-throughput sequencing for pathogen discovery and provides a blueprint for public health efforts to quickly curb unidentified emerging viral disease outbreaks in the future. It will also enable the development of specific tests to diagnose infection, determine the origin of the virus, and develop drugs and vaccines to treat and prevent disease.

In September and October 2008, five cases of undiagnosed hemorrhagic fever were recognized in South Africa after air transfer of a critically ill individual from Zambia. The disease was fatal in four of the five cases, including the originally infected individual, the paramedic who attended the patient during air transfer, the nurse who attended the patient in the intensive care unit, and a member of the hospital staff who cleaned the room after the death of the patient. The fifth case, a nurse who attended the paramedic, one day before barrier nursing procedures were implemented, received anti-viral treatment and recovered.

"Within 72 hours we identified the novel virus using high-throughput sequencing," stated Thomas Briese, PhD, associate professor of clinical Epidemiology and associate director of the Center for Infection and Immunity (CII) at Columbia University Mailman School of Public Health.

"It is reassuring that we now have the tools needed to rapidly detect and respond to the challenges of unknown pathogens. A key challenge that remains is deployment of these technologies to the 'hot spots' where new killer viruses frequently emerge. We remain committed to this important public health effort as it represents a unique opportunity to prevent the next pandemic, be it a threat like HIV or SARS," said Ian Lipkin, MD, John Snow Professor of Epidemiology and professor of Neurology and Pathology at Columbia University and director of CII.

"The successful international collaboration during this highly fatal outbreak highlighted the importance of global cooperation in outbreak response to emerging and highly dangerous pathogens", stated Janusz Paweska, DVSc, Head of the Special Pathogens Unit of NICD-NHLS, extraordinary professor at the University of Pretoria, and deputy director of the Southern African Centre for Infectious Disease Surveillance. "This south-north collaboration created a powerful partnership of scientific excellence, resulting in rapid and comprehensive full genetic characterization of the new virus".

"454-sequencing enables researchers to quickly identify organisms present in a complex sample without any prior knowledge or bias," explained Michael Egholm, co-author and Chief Technology Officer and Vice President of Research and Development at 454 Life Sciences. "Our work with Lipkin and colleagues in developing a comprehensive approach to pathogen detection has borne fruit in resolving a number of recent disease outbreaks and confirms that it will be a critical tool for public health. We were honored in this most recent example to work with outstanding investigators at the U. S. Centers for Disease Control and Prevention, the National Institute for Communicable Diseases, South Africa, the CII, and the World Health Organization."

This work was supported by and the National Institutes of Health's National Institute of Allergy and Infectious Diseases and National Heart, Lung, and Blood Institute.

About the Center for Infection and Immunity at Columbia University's Mailman School of Public Health

The Center is dedicated to global research and training programs focused on pathogen surveillance and discovery, and the understanding of how gene-environment-timing interactions contribute to health and disease.

About the Mailman School of Public Health

The only accredited school of public health in New York City and among the first in the nation, Columbia University's Mailman School of Public Health pursues an agenda of research, education, and service to address the critical and complex public health issues affecting millions of people locally and globally. The Mailman School is the recipient of some of the largest governmental and private grants in Columbia University's history. Its more than 1000 graduate students pursue master's and doctoral degrees, and the School's 300 multi-disciplinary faculty members work in more than 100 countries around the world, addressing such issues as infectious and chronic diseases, health promotion and disease prevention, environmental health, maternal and child health, health over the life course, health policy, and public health preparedness.

Randee Sacks Levine | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>