Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach to fighting Alzheimer's shows potential in clinical trial

08.01.2010
Nutrient mix shows promise in improving memory

In the early stages of Alzheimer's disease, patients typically suffer a major loss of the brain connections necessary for memory and information processing. Now, a combination of nutrients that was developed at MIT has shown the potential to improve memory in Alzheimer's patients by stimulating growth of new brain connections.

In a clinical trial of 225 Alzheimer's patients, researchers found that a cocktail of three naturally occurring nutrients believed to promote growth of those connections, known as synapses, plus other ingredients (B vitamins, phosopholipids and antioxidants), improved verbal memory in patients with mild Alzheimer's.

"If you can increase the number of synapses by enhancing their production, you might to some extent avoid that loss of cognitive ability," says Richard Wurtman, the Cecil H. Green Distinguished Professor of Brain and Cognitive Sciences, who did the basic research that led to the new experimental treatment. He is an author of a paper describing the new results in the journal Alzheimer's and Dementia.

There is currently no cure for Alzheimer's disease, though some medications can slow the progression of the disease. In particular, many U.S. patients take cholinesterase inhibitors, which increase levels of acetylcholine, a neurotransmitter important for learning and memory.

While those treatments target the symptoms of Alzheimer's, Wurtman hopes to attack what he believes is the root cause of the disease: loss of synapses. The three nutrients in his dietary cocktail — uridine, choline and the omega-3 fatty acid DHA (all normally present in breast milk) — are precursors to the fatty molecules that make up brain cell membranes, which form synapses.

In animal studies, Wurtman has shown that these nutrients boost the number of dendritic spines (small outcroppings of neural membranes). When those spines contact another neuron, a synapse is formed.

Three additional clinical studies in Alzheimer's patients are now underway, one in the United States and two in Europe. Results are expected to be available between 2011 and 2013.

The first clinical study was sponsored by the French company Danone, known in the United States as Dannon; the study was conducted primarily in Europe and was led by Philip Scheltens, director of the Alzheimer Center at Vrije Universiteit Medical Center in Amsterdam. Wurtman and MIT have patented the mixture of nutrients used in the study, and Nutricia Advanced Medical Nutrition, a unit of Danone, holds the exclusive license on the patent.

Patients with mild Alzheimer's drank the cocktail (made in the form of a nutrient drink called Souvenaid, with the collaboration of Danone) or a control beverage daily for 12 weeks. Patients who received the nutrients showed a statistically significant level of improvement compared to control subjects: 40 percent of the treated patients improved performance in a test of verbal memory (memory for words, as opposed to memory of locations or experiences) known as the Wechsler Memory Scale, while 24 percent of patients who received the control drink improved their performance. Among those who received the cocktail, patients with the mildest cases of Alzheimer's showed the most improvement.

The drink appeared to have no effect on patients' performance in another commonly used evaluation for Alzheimer's patients, the ADAS-cog test. Wurtman believes that is because ADAS-cog is a more general assessment that tests for orientation and movement/spatial memory as well as cognition. So in subjects with early Alzheimer's who show principally cognitive changes, more than the 225 subjects in the first study will probably be required to yield significant ADAS-cog changes after Souvenaid. The 500 subjects in the ongoing study in the United States may be sufficient.

John Growdon, a neurologist at Massachusetts General Hospital, says that trying to regrow synapses is an innovative strategy and offers a complementary approach to two other lines of attack in treating Alzheimer's: targeting the amyloid plaques that accumulate in patients' brains, and minimizing the damage done by toxic metabolites that build up in Alzheimer's-affected brains.

"I don't think any one approach has a monopoly, and that's good," Growdon says. "You need to have a lot of different approaches because no one knows what's going to work."

Wurtman believes his approach to Alzheimer's may eventually prove beneficial in treating other diseases. If these nutrients prove to be successful in Alzheimer's patients, "then you can think about other diseases in which there are too few synapses," such as Parkinson's disease, he says. "There are a lot of diseases associated with synapse deficiency."

Written by Anne Trafton, MIT News Office

Anne Trafton | EurekAlert!
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Protein Structure Could Unlock New Treatments for Cystic Fibrosis

14.12.2017 | Life Sciences

Cardiolinc™: an NPO to personalize treatment for cardiovascular disease patients

14.12.2017 | Life Sciences

ASU scientists develop new, rapid pipeline for antimicrobials

14.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>