Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach to fighting Alzheimer's shows potential in clinical trial

08.01.2010
Nutrient mix shows promise in improving memory

In the early stages of Alzheimer's disease, patients typically suffer a major loss of the brain connections necessary for memory and information processing. Now, a combination of nutrients that was developed at MIT has shown the potential to improve memory in Alzheimer's patients by stimulating growth of new brain connections.

In a clinical trial of 225 Alzheimer's patients, researchers found that a cocktail of three naturally occurring nutrients believed to promote growth of those connections, known as synapses, plus other ingredients (B vitamins, phosopholipids and antioxidants), improved verbal memory in patients with mild Alzheimer's.

"If you can increase the number of synapses by enhancing their production, you might to some extent avoid that loss of cognitive ability," says Richard Wurtman, the Cecil H. Green Distinguished Professor of Brain and Cognitive Sciences, who did the basic research that led to the new experimental treatment. He is an author of a paper describing the new results in the journal Alzheimer's and Dementia.

There is currently no cure for Alzheimer's disease, though some medications can slow the progression of the disease. In particular, many U.S. patients take cholinesterase inhibitors, which increase levels of acetylcholine, a neurotransmitter important for learning and memory.

While those treatments target the symptoms of Alzheimer's, Wurtman hopes to attack what he believes is the root cause of the disease: loss of synapses. The three nutrients in his dietary cocktail — uridine, choline and the omega-3 fatty acid DHA (all normally present in breast milk) — are precursors to the fatty molecules that make up brain cell membranes, which form synapses.

In animal studies, Wurtman has shown that these nutrients boost the number of dendritic spines (small outcroppings of neural membranes). When those spines contact another neuron, a synapse is formed.

Three additional clinical studies in Alzheimer's patients are now underway, one in the United States and two in Europe. Results are expected to be available between 2011 and 2013.

The first clinical study was sponsored by the French company Danone, known in the United States as Dannon; the study was conducted primarily in Europe and was led by Philip Scheltens, director of the Alzheimer Center at Vrije Universiteit Medical Center in Amsterdam. Wurtman and MIT have patented the mixture of nutrients used in the study, and Nutricia Advanced Medical Nutrition, a unit of Danone, holds the exclusive license on the patent.

Patients with mild Alzheimer's drank the cocktail (made in the form of a nutrient drink called Souvenaid, with the collaboration of Danone) or a control beverage daily for 12 weeks. Patients who received the nutrients showed a statistically significant level of improvement compared to control subjects: 40 percent of the treated patients improved performance in a test of verbal memory (memory for words, as opposed to memory of locations or experiences) known as the Wechsler Memory Scale, while 24 percent of patients who received the control drink improved their performance. Among those who received the cocktail, patients with the mildest cases of Alzheimer's showed the most improvement.

The drink appeared to have no effect on patients' performance in another commonly used evaluation for Alzheimer's patients, the ADAS-cog test. Wurtman believes that is because ADAS-cog is a more general assessment that tests for orientation and movement/spatial memory as well as cognition. So in subjects with early Alzheimer's who show principally cognitive changes, more than the 225 subjects in the first study will probably be required to yield significant ADAS-cog changes after Souvenaid. The 500 subjects in the ongoing study in the United States may be sufficient.

John Growdon, a neurologist at Massachusetts General Hospital, says that trying to regrow synapses is an innovative strategy and offers a complementary approach to two other lines of attack in treating Alzheimer's: targeting the amyloid plaques that accumulate in patients' brains, and minimizing the damage done by toxic metabolites that build up in Alzheimer's-affected brains.

"I don't think any one approach has a monopoly, and that's good," Growdon says. "You need to have a lot of different approaches because no one knows what's going to work."

Wurtman believes his approach to Alzheimer's may eventually prove beneficial in treating other diseases. If these nutrients prove to be successful in Alzheimer's patients, "then you can think about other diseases in which there are too few synapses," such as Parkinson's disease, he says. "There are a lot of diseases associated with synapse deficiency."

Written by Anne Trafton, MIT News Office

Anne Trafton | EurekAlert!
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>