Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antitoxin Strategy May Help Target Other Pathogens

19.06.2012
Researchers have unveiled a novel strategy for neutralizing unwanted molecules and clearing them from the body.

The strategy employs chains of binding agents, like “beads on a string”, which target two sites on one or more pathogenic molecules to neutralize their activity and promote their clearance by the body’s immune system.

The low-cost, easy-to-replicate tool has demonstrated applications against several different toxins, from those found in contaminated food to those used in bioterrorism, and may also prove effective in targeting other types of pathogens.

The research team, based at Tufts University’s Cummings School of Veterinary Medicine, demonstrated the method’s efficacy in preventing the symptoms of botulism, a rare but deadly disease caused by Clostridium botulinum neurotoxin (BoNT), considered one of the most dangerous bioterror threat agents. The findings were presented earlier this year in PLoS ONE.

“Currently, antitoxins are difficult to produce and have a short shelf life, making them very expensive. This new approach provides a low-cost way to develop highly effective antitoxins,” said senior author Charles B. Shoemaker, PhD, professor of biomedical sciences at Tufts University's Cummings School of Veterinary Medicine.

“This method has the potential to target a number of pathogens – not only toxins such as BoNT, but viruses or inflammatory cytokines. It is an important platform through which to address other significant diseases,” says co-author Saul Tzipori, BVSc., DSc, PhD, professor of biomedical sciences and director of the Division of Infectious Diseases at the Cummings School.

Shoemaker and team had earlier found that pools of small ‘tagged’ binding agents were highly effective in targeting toxins, neutralizing their function, and flagging them for removal via the body’s immune system in the presence of an anti-tag monoclonal antibody.

In the newly published in vivo study, the researchers have advanced this approach by linking two BoNT-binding agents together and including two copies of the tag. The binding agents are small, stable proteins derived genetically from unusual antibodies produced by toxin-immune alpacas. The resulting molecule, called a ‘double-tagged heterodimer,’ binds to two separate sites on the toxin. Binding of this single heterodimeric agent much more effectively neutralizes the toxin than the unlinked monomer binding agents used in the prior research. In addition, attaching two tags to each of the two linked agents leads to toxin decoration by up to four anti-tag monoclonal antibodies, which promotes rapid toxin clearance from the blood, the researchers found (see figure).

The double-tagged heterodimer antitoxin agent strategy was shown to be efficacious against two types of BoNT in the PLoS ONE report. The antitoxin agents were administered at the time of exposure, or shortly after. Treated mice did not show any symptoms of botulism – including the lethal paralysis which characterizes the disease, even when exposed to high toxin doses. Thus, the benefits of complex antitoxins were equaled or bettered by administration of two easy-to-produce agents; a heterodimer binding agent and an anti-tag monoclonal antibody.

According to Shoemaker, a major advantage of this approach is that, unlike treatments that only neutralize toxins, this treatment both neutralizes toxins and ensures their rapid clearance from the body. “Agents that only neutralize their pathogenic target will eventually dissociate which will allow the pathogen to continue doing damage if it is not eliminated,” he said.

The group has now successfully taken the research further by building longer strings of binding agents that target multiple toxins with a single molecule—for example, the two types of Shiga toxins that are produced by some E. coli found in contaminated foods or the two toxins produced by hospital-acquired C. difficile infections.

The work was funded in part by the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), the Department of Health and Human Services, and the Intramural Research Program of the NIAID.

Additional authors on the paper are co-first authors Jean Mukherjee and Jacqueline M. Tremblay; and Kwasi Ofori, Karen Baldwin, Xiochuan Feng, all in the Department of Biomedical Sciences, and Daniela Bedenice of the Department of Clinical Sciences at the Cummings School. Clinton E. Leysath, of the NIAID, and Robert P. Webb, Patrick M. Wright, and Leonard A. Smith, all of the United States Army Medical Research Institute for Infectious Diseases, also contributed.

Mukherjee J, Tremblay JM, Leysath CE, Ofori K, Baldwin K, et al. “A Novel Strategy for Development of Recombinant Antitoxin Therapeutics Tested in a Mouse Botulism Model.” PLoS ONE 7(1): e29941. Published online January 6, 2012, doi: 10.1371/journal.pone.0029941

About the Cummings School of Veterinary Medicine at Tufts University
Founded in 1978 in North Grafton, Mass., Cummings School of Veterinary Medicine at Tufts University is internationally esteemed for academic programs that impact society and the practice of veterinary medicine; three hospitals and two clinics that combined log more than 80,000 animal cases each year; and groundbreaking research that benefits animal, public, and environmental health.

Attending BIO? Please stop by our booth (#301) to learn more about the innovative work done at the Cummings School, including clinical trials, infectious disease vaccine and therapy research and more.

Thomas Keppeler | Newswise Science News
Further information:
http://www.tufts.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>