Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First use of antibody and stem cell transplantation to successfully treat advanced leukemia

For the first time, researchers at Fred Hutchinson Cancer Research Center have reported the use of a radiolabeled antibody to deliver targeted doses of radiation, followed by a stem cell transplant, to successfully treat a group of leukemia and pre-leukemia patients for whom there previously had been no other curative treatment options.

All fifty-eight patients, with a median age of 63 and all with advanced acute myeloid leukemia or high-risk myelodysplastic syndrome – a pre-leukemic condition – saw their blood cancers go into remission using a novel combination of low-intensity chemotherapy, targeted radiation delivery by an antibody and a stem-cell transplant.

Forty percent of the patients were alive a year after treatment and approximately 35 percent had survived three years, about the same rates as patients who received similar treatment but whose disease was already in remission and who had much more favorable risk for relapse when therapy began.

Results of the research appear online in the journal Blood. The principal investigator and corresponding author of the paper is John Pagel, M.D., Ph.D, a transplant oncologist and assistant member of the Hutchinson Center's Clinical Research Division.

The purpose of the study was to find the maximum dose of radiation that patients could tolerate with acceptable toxic side effects, not to assess how effective the novel treatment was, according to Pagel and colleagues. However, "the results appear to be very encouraging and warrant us to study it further for patients who really have no significant other curative options," Pagel said.

Older (over age 50) patients with active, advanced leukemia and myelodysplastic syndrome pose the most difficult treatment challenges because standard transplant therapy rarely works, according to Pagel. Both standard and low-dose therapies (a process sometimes known as a "mini transplant" and pioneered at the Hutchinson Center) used to kill leukemia cells in the bloodstream in preparation for a transplant usually require that patients be in remission.

The patients in this study, who came from all over the world to participate in the Phase 1 clinical trial, were in large part those with active relapsed disease that in many cases had failed to respond to standard therapies. Eighty-six percent of the 58 patients had active disease and only 10 percent were in remission when therapy was begun. Their cancers had failed previous treatment attempts. "These were people who had extremely advanced high-risk disease, they were typically older – most of them were in their 60s and some were in their 70s – and had few or no other options for a potential cure. In fact most, if not all, would not been offered a stem cell transplant here or elsewhere. It is fair to say that these patients would likely have died without a transplant being performed if they had not been given the opportunity to participate in this study."

To find the optimal dose of radiation, researchers began at 12 Gy (Gray, a unit of measurement of absorbed radiation dose) and escalated the dosages in increments of 2 Gy up to a Gy of 26. At that dose, some toxicity to the heart and lungs was found so they concluded 24 Gy to be the maximum effective dosage. The 21 patients who received the maximum radiation dose have survived the longest, researchers reported.

The key to success in this study was use of a radiolabeled antibody that has therapeutic iodine 131 attached and is designed to target leukemic bloods cells that carry a marker on the surface of the cell known as CD45. Its use in delivering targeted amounts of radiation was developed several years ago at the Hutchinson Center. Delivered intravenously, the radiation looks for the CD45 antigen receptor on the surface of blood cells. This approach results in a two- to four-fold increase in the amount of radiation that reaches cancerous cells as compared to standard external beam radiation, which also radiates normal surrounding organs and tissue. The more radiation that can be applied, the more cancer cells will be killed in preparation for donor stem cells to take over the diseased immune system and kill off the remaining cancer cells.

Pagel said further research is needed to test more patients at the highest radiation dose both at the Hutchinson Center and at other transplant centers around the country.

Joining Pagel in the study were colleagues from the Hutchinson Center, the Pacific Northwest Laboratory and the departments of Medicine, Pediatrics and Nuclear Medicine at the University of Washington School of Medicine.

Grants from the National Institutes of Health, the Leukemia and Lymphoma Society of America, the Damon Runyon Cancer Research Foundation, the Edson Foundation and the Frederick Kullman Memorial Fund supported this research.

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. For more information, please visit

Dean Forbes | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>