Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First use of antibody and stem cell transplantation to successfully treat advanced leukemia

09.11.2009
For the first time, researchers at Fred Hutchinson Cancer Research Center have reported the use of a radiolabeled antibody to deliver targeted doses of radiation, followed by a stem cell transplant, to successfully treat a group of leukemia and pre-leukemia patients for whom there previously had been no other curative treatment options.

All fifty-eight patients, with a median age of 63 and all with advanced acute myeloid leukemia or high-risk myelodysplastic syndrome – a pre-leukemic condition – saw their blood cancers go into remission using a novel combination of low-intensity chemotherapy, targeted radiation delivery by an antibody and a stem-cell transplant.

Forty percent of the patients were alive a year after treatment and approximately 35 percent had survived three years, about the same rates as patients who received similar treatment but whose disease was already in remission and who had much more favorable risk for relapse when therapy began.

Results of the research appear online in the journal Blood. The principal investigator and corresponding author of the paper is John Pagel, M.D., Ph.D, a transplant oncologist and assistant member of the Hutchinson Center's Clinical Research Division.

The purpose of the study was to find the maximum dose of radiation that patients could tolerate with acceptable toxic side effects, not to assess how effective the novel treatment was, according to Pagel and colleagues. However, "the results appear to be very encouraging and warrant us to study it further for patients who really have no significant other curative options," Pagel said.

Older (over age 50) patients with active, advanced leukemia and myelodysplastic syndrome pose the most difficult treatment challenges because standard transplant therapy rarely works, according to Pagel. Both standard and low-dose therapies (a process sometimes known as a "mini transplant" and pioneered at the Hutchinson Center) used to kill leukemia cells in the bloodstream in preparation for a transplant usually require that patients be in remission.

The patients in this study, who came from all over the world to participate in the Phase 1 clinical trial, were in large part those with active relapsed disease that in many cases had failed to respond to standard therapies. Eighty-six percent of the 58 patients had active disease and only 10 percent were in remission when therapy was begun. Their cancers had failed previous treatment attempts. "These were people who had extremely advanced high-risk disease, they were typically older – most of them were in their 60s and some were in their 70s – and had few or no other options for a potential cure. In fact most, if not all, would not been offered a stem cell transplant here or elsewhere. It is fair to say that these patients would likely have died without a transplant being performed if they had not been given the opportunity to participate in this study."

To find the optimal dose of radiation, researchers began at 12 Gy (Gray, a unit of measurement of absorbed radiation dose) and escalated the dosages in increments of 2 Gy up to a Gy of 26. At that dose, some toxicity to the heart and lungs was found so they concluded 24 Gy to be the maximum effective dosage. The 21 patients who received the maximum radiation dose have survived the longest, researchers reported.

The key to success in this study was use of a radiolabeled antibody that has therapeutic iodine 131 attached and is designed to target leukemic bloods cells that carry a marker on the surface of the cell known as CD45. Its use in delivering targeted amounts of radiation was developed several years ago at the Hutchinson Center. Delivered intravenously, the radiation looks for the CD45 antigen receptor on the surface of blood cells. This approach results in a two- to four-fold increase in the amount of radiation that reaches cancerous cells as compared to standard external beam radiation, which also radiates normal surrounding organs and tissue. The more radiation that can be applied, the more cancer cells will be killed in preparation for donor stem cells to take over the diseased immune system and kill off the remaining cancer cells.

Pagel said further research is needed to test more patients at the highest radiation dose both at the Hutchinson Center and at other transplant centers around the country.

Joining Pagel in the study were colleagues from the Hutchinson Center, the Pacific Northwest Laboratory and the departments of Medicine, Pediatrics and Nuclear Medicine at the University of Washington School of Medicine.

Grants from the National Institutes of Health, the Leukemia and Lymphoma Society of America, the Damon Runyon Cancer Research Foundation, the Edson Foundation and the Frederick Kullman Memorial Fund supported this research.

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. For more information, please visit fhcrc.org.

Dean Forbes | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>