Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibiotic use in infants before 6 months associated with being overweight in childhood

21.08.2012
Treating very young infants with antibiotics may predispose them to being overweight in childhood, according to a study of more than 10,000 children by researchers at the NYU School of Medicine and the NYU Wagner School of Public Service and published in the online August 21, 2012, issue of the International Journal of Obesity.

The study found that on average, children exposed to antibiotics from birth to 5 months of age weighed more for their height than children who weren't exposed. Between the ages of 10 to 20 months, this translated into small increases in body mass percentile, based on models that incorporated the potential impacts of diet, physical activity, and parental obesity.

By 38 months of age, exposed children had a 22% greater likelihood of being overweight. However, the timing of exposure mattered: children exposed from 6 months to 14 months did not have significantly higher body mass than children who did not receive antibiotics in that same time period.

The NYU School of Medicine researchers, led by Leonardo Trasande, MD, MPP, associate professor of pediatrics and environmental medicine, and Jan Blustein, MD, PhD, professor of population health and medicine, caution that the study does not prove that antibiotics in early life causes young children to be overweight. It only shows that a correlation exists. Further studies will need to be conducted to explore the issue of a direct causal link.

"We typically consider obesity an epidemic grounded in unhealthy diet and exercise, yet increasingly studies suggest it's more complicated," said Dr. Trasande. "Microbes in our intestines may play critical roles in how we absorb calories, and exposure to antibiotics, especially early in life, may kill off healthy bacteria that influence how we absorb nutrients into our bodies, and would otherwise keep us lean."

In recent years there has been a growing concern about the overuse of antibiotics, especially in children. Preliminary studies of the microbiome, the trillions of microbial cells inhabiting our bodies and outnumber our own cells 10 to 1, implicate obesity, inflammatory bowel disease, asthma, and other conditions with changes in the microbiome. It is still a field in its infancy, however, and no one has yet proved that altering the composition of bacteria in the body leads to disease.

This is the first time that a study has analyzed the association between the use of antibiotics and body mass starting in infancy. One previous study had identified a link between antibiotic use in early infancy and obesity at seven years of age, but was unable to examine potential impacts of antibiotic use later in infancy on body weight in childhood.

The NYU School of Medicine researchers evaluated the use of antibiotics among 11,532 children born in Avon, United Kingdom, during 1991 and 1992. The children are part of the Avon Longitudinal Study of Parents and Children (ALSPAC), a long-term study that provides detailed data on the health and development of these children.

The NYU School of Medicine researchers analyzed health information on these children during three periods: from birth to 5 months of age; 6 months to 14 months; and, finally from 15 to 23 months. They also examined body mass or weight at five different points of time—6 weeks, 10 months, 20 months, 38 months, and 7 years of age.

Antibiotic use only appeared to have an effect in very young infants (those given antibiotics from birth to 5 months of age.) Although children exposed to antibiotics at 15 to 23 months had somewhat greater BMI (Body Mass Indices) for their age and gender by the age of 7, there was no significant increase in their being overweight or obese.

"For many years now, farmers have known that antibiotics are great at producing heavier cows for market," said Dr. Blustein. "While we need more research to confirm our findings, this carefully conducted study suggests that antibiotics influence weight gain in humans, and especially children too."

In addition to Dr. Trasande, who is also associate professor of health policy, NYU Wagner School of Public Service, and Dr. Blustein, who is also a professor of health policy at the NYU Wagner School of Public Service, the authors of the study are: Mengling Liu, PhD, associate professor of environmental medicine, NYU School of Medicine; Elise Corwin, BA, NYU Wagner School of Public Service; Laura M. Cox, BA, Department of Microbiology, NYU School of Medicine; Martin J. Blaser, MD, the Frederick H. King Professor of Internal Medicine and chair Department of Medicine, and professor of microbiology, NYU School of Medicine.

Support for this preliminary work with the ALPSAC database was provided through a pilot grant from the NYU Global Public Health Research Challenge Fund, and by NIH grants 1GM090989 and 1UL1RR029893.

Disclosures:
All authors have no financial relationships or conflicts of interests to declare.

About NYU School of Medicine:

NYU School of Medicine is one of the nation's preeminent academic institutions dedicated to achieving world class medical educational excellence. For 170 years, NYU School of Medicine has trained thousands of physicians and scientists who have helped to shape the course of medical history and enrich the lives of countless people. An integral part of NYU Langone Medical Center, the School of Medicine at its core is committed to improving the human condition through medical education, scientific research and direct patient care. The School also maintains academic affiliations with area hospitals, including Bellevue Hospital Center, one of the nation's finest municipal hospitals where its students, residents and faculty provide the clinical and emergency care to New York City's diverse population, which enhances the scope and quality of their medical education and training. Additional information about the NYU School of Medicine is available at http://school.med.nyu.edu/.

lorinda klein | EurekAlert!
Further information:
http://www.nyumc.org

Further reports about: Medicine NYU School antibiotic antibiotic use body mass medical education

More articles from Health and Medicine:

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

nachricht Overdosing on Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>