Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibacterial peptide could aid in treating soldiers' burn wound infections

01.09.2010
An antibacterial peptide developed by Laszlo Otvos, a research professor of biology in Temple's College of Science and Technology, looks to be a highly-effective therapy against infections in burn or blast wounds suffered by soldiers.

Otvos and his collaborators found that when given intramuscularly the peptide A3-APO was more effective than current antimicrobial chemotherapy measures in treating multidrug-resistant Acinetobacter baumannii, the most common systemic infection found in soldiers who suffer burn or blast wounds. The peptide is also highly efficacious in models of multi-drug resistant systemic Escherichia coli infections.

Their findings are being published in the Journal of Antimicrobial Chemotherapy.

Otvos said that 40 percent of gowns and gloves in military hospitals are infected with Acinetobacter baumannii, and half of the soldiers returning from Iraq and Afghanistan with burn wounds will become infected.

Currently, these infections are treated with an antibiotic, either imipenem or colistin. However, both of these rapidly lose efficacy due to high rates of antimicrobial resistance. In addition, colistin is a strongly toxic drug and worldwide research is focusing on its replacement options.

For their study, the researchers used a strain of Acinetobacter baumannii isolated from an injured Canadian soldier returning from Afghanistan for testing in the lab. They found that A3-APO, when given intramuscularly, was less toxic and more effective in reducing bacterial counts in the blood and the injury site than imipenem or colistin. The peptide also protected open wounds from environmental bacterial infection.

"This is the first peptide ever that is more efficacious in an animal model than anything else that is available," said Otvos, who hopes the peptide can be tested in clinical trials in the near future.

Copies of this study are available to working journalists and may be obtained by contacting Preston M. Moretz in Temple's Office of University Communications at pmoretz@temple.edu

Preston M. Moretz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>