Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could anti-parasitic drugs be effective against cancer?

22.05.2009
Japanese researchers have shown that the metabolism used by cancer cells to create the energy necessary for proliferation could be the same or similar to the specific type of metabolism used by parasites such as roundworms in low-oxygen environments. These are the first such findings ever made worldwide.

Metabolomic analysis suggests that cancer uses the same type of metabolism as roundworms. Results of joint research project (Project of Early Clinical Development for Anti-Cancer Medicine and Devices) conducted by the Super Special Consortia between the Institute for Advanced Biosciences at Keio University and the National Cancer Center Hospital East.

A group of researchers including Akiyoshi Hirayama and Professor Tomiyoshi Soga of the Institute for Advanced Biosciences (IAB), Keio University (located in the City of Tsuruoka, Yamagata Prefecture, Director General: Masaru Tomita) and Hiroyasu Esumi, Director of the National Cancer Center Hospital East (located in the City of Kashiwa, Chiba Prefecture) have used metabolomic (*1) analysis to show that the metabolism (*2) used by cancer cells to create the energy necessary for proliferation could be the same or similar to the specific type of metabolism used by parasites such as roundworms in low-oxygen environments. These are the first such findings ever made worldwide, and are the results of a joint research project entitled “Project of Early Clinical Development for Anti-Cancer Medicine and Devices” conducted between IAB Keio University and the National Cancer Center Hospital East, which was selected by the national government as a Super Special Consortia for FY2008 for supporting the development of cutting-edge medical care.

These findings were published in the 19 May, 2009 online edition of Cancer Research (American Association for Cancer Research). http://cancerres.aacrjournals.org/cgi/content/abstract/0008-5472.CAN-08-4806v1

1. Background information

In oxygen-rich environments, the vast majority of living organisms use the citric acid cycle (*3), a central part of metabolism, to produce ATP (*4), a source of energy. Parasitic roundworms inhale oxygen and use the same citric acid cycle as humans to produce energy in environments where oxygen is freely available, such as when they are growing as larvae or outside hosts. However, once they enter the small intestine where oxygen is not freely available, they use a special type of metabolism to produce energy. A certain type of anti-parasitic drugs selectively inhibits this special type of metabolism used by the parasite, which kills the parasite without causing any adverse reaction in the human host. A group of researchers led by Hiroyasu Esumi, the Director of the National Cancer Center Hospital East, discovered in 2004 that anti-parasitic drugs can kill malignant cancer cells. Based on these results and the fact that cancer cells can actively proliferate in environments with limited oxygen and no blood vessels, it was hypothesized in 2004 that cancer cells produce energy using a type of metabolism that is similar to that employed by roundworms.

2. Research findings

The research team took cancer tissue and normal tissue from colon cancer and stomach cancer patients. A comprehensive metabolome profiling of each tissue was performed by capillary electrophoresis mass time-of-flight mass spectrometry at IAB Keio University, and the metabolites of the cancer and normal tissues were compared. It was found that a high concentration of succinic acid had accumulated in cancer tissue, a phenomenon that is also observed with roundworms in oxygen-deficient environments. This accumulation of succinic acid in roundworms was only observed with the special type of metabolism (i.e. the type carried out in oxygen-deficient environments), which is strong evidence that cancer cells use the same type of metabolism. It was also revealed that a greater quantity of succinic acid had accumulated in cancers of the colon and rectum, where oxygen concentration is low, than in cancers of the stomach, where oxygen concentration is higher.

Since anti-parasitic drugs can kill cancer cells, and cancer tissue and roundworms use similar metabolic patterns for producing energy, the research project showed that the type of metabolism used by cancer cells to create the energy necessary for proliferation could be the same or similar to the special type of metabolism used by parasites such as roundworms in low-oxygen environments.

Some of the research findings were published in the 19 May, 2009 online edition of Cancer Research (American Association for Cancer Research).

The team will forge ahead with the project, aiming to identify the specific type of metabolism used by cancer cells and thereby develop a drug that selectively inhibits the key enzyme (*5) in the metabolic system. The final goal is to develop an effective anti-cancer drug with a low incidence of adverse events, since it does not act on normal tissue.

3. Researcher’s comments

Hiroyasu Esumi, Director of National Cancer Center Hospital East said, “The metabolomic technologies developed by IAB Keio University are among the best in the world. Thanks to these

technologies, we have made an unexpected discovery about the properties of cancer and found a clue for developing a revolutionary anti-cancer drug.”

Professor Tomiyoshi Soga at IAB said, “We have used the metabolomic analysis technologies developed thanks to the support of Yamagata Prefecture and the City of Tsuruoka to discover a type of metabolism selectively used by cancer cells. I am delighted that this is the first step in the quest to develop a new type of anti-cancer drug.”

Explanation of technical terms

*1. Metabolome
Collective name for the many thousands of types of metabolites (intermediates and products of metabolism) in cells, including amino acids, sugars, and lipids.
*2. Metabolism
Chemical (enzyme) reactions in the body. Substances taken in from outside the body are converted into other substances to create energy necessary for cells and life, as well as biopolymers such as proteins and nucleic acids.
*3. Citric acid cycle
Metabolic pathway for producing ATP, a source of energy, in organisms that use aerobic respiration. Other substances such as amino acids are produced in the citric acid cycle.
*4. ATP
Abbreviation of adenosine triphosphate. Energy source for all organisms.
*5. Enzymes
Proteins that increase the rate of metabolic reactions (converting substances into different substances).

Center for Research Promotion | Research asia research news
Further information:
http://www.keio.ac.jp/english/press_release/090520e.pdf
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>