Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could anti-parasitic drugs be effective against cancer?

22.05.2009
Japanese researchers have shown that the metabolism used by cancer cells to create the energy necessary for proliferation could be the same or similar to the specific type of metabolism used by parasites such as roundworms in low-oxygen environments. These are the first such findings ever made worldwide.

Metabolomic analysis suggests that cancer uses the same type of metabolism as roundworms. Results of joint research project (Project of Early Clinical Development for Anti-Cancer Medicine and Devices) conducted by the Super Special Consortia between the Institute for Advanced Biosciences at Keio University and the National Cancer Center Hospital East.

A group of researchers including Akiyoshi Hirayama and Professor Tomiyoshi Soga of the Institute for Advanced Biosciences (IAB), Keio University (located in the City of Tsuruoka, Yamagata Prefecture, Director General: Masaru Tomita) and Hiroyasu Esumi, Director of the National Cancer Center Hospital East (located in the City of Kashiwa, Chiba Prefecture) have used metabolomic (*1) analysis to show that the metabolism (*2) used by cancer cells to create the energy necessary for proliferation could be the same or similar to the specific type of metabolism used by parasites such as roundworms in low-oxygen environments. These are the first such findings ever made worldwide, and are the results of a joint research project entitled “Project of Early Clinical Development for Anti-Cancer Medicine and Devices” conducted between IAB Keio University and the National Cancer Center Hospital East, which was selected by the national government as a Super Special Consortia for FY2008 for supporting the development of cutting-edge medical care.

These findings were published in the 19 May, 2009 online edition of Cancer Research (American Association for Cancer Research). http://cancerres.aacrjournals.org/cgi/content/abstract/0008-5472.CAN-08-4806v1

1. Background information

In oxygen-rich environments, the vast majority of living organisms use the citric acid cycle (*3), a central part of metabolism, to produce ATP (*4), a source of energy. Parasitic roundworms inhale oxygen and use the same citric acid cycle as humans to produce energy in environments where oxygen is freely available, such as when they are growing as larvae or outside hosts. However, once they enter the small intestine where oxygen is not freely available, they use a special type of metabolism to produce energy. A certain type of anti-parasitic drugs selectively inhibits this special type of metabolism used by the parasite, which kills the parasite without causing any adverse reaction in the human host. A group of researchers led by Hiroyasu Esumi, the Director of the National Cancer Center Hospital East, discovered in 2004 that anti-parasitic drugs can kill malignant cancer cells. Based on these results and the fact that cancer cells can actively proliferate in environments with limited oxygen and no blood vessels, it was hypothesized in 2004 that cancer cells produce energy using a type of metabolism that is similar to that employed by roundworms.

2. Research findings

The research team took cancer tissue and normal tissue from colon cancer and stomach cancer patients. A comprehensive metabolome profiling of each tissue was performed by capillary electrophoresis mass time-of-flight mass spectrometry at IAB Keio University, and the metabolites of the cancer and normal tissues were compared. It was found that a high concentration of succinic acid had accumulated in cancer tissue, a phenomenon that is also observed with roundworms in oxygen-deficient environments. This accumulation of succinic acid in roundworms was only observed with the special type of metabolism (i.e. the type carried out in oxygen-deficient environments), which is strong evidence that cancer cells use the same type of metabolism. It was also revealed that a greater quantity of succinic acid had accumulated in cancers of the colon and rectum, where oxygen concentration is low, than in cancers of the stomach, where oxygen concentration is higher.

Since anti-parasitic drugs can kill cancer cells, and cancer tissue and roundworms use similar metabolic patterns for producing energy, the research project showed that the type of metabolism used by cancer cells to create the energy necessary for proliferation could be the same or similar to the special type of metabolism used by parasites such as roundworms in low-oxygen environments.

Some of the research findings were published in the 19 May, 2009 online edition of Cancer Research (American Association for Cancer Research).

The team will forge ahead with the project, aiming to identify the specific type of metabolism used by cancer cells and thereby develop a drug that selectively inhibits the key enzyme (*5) in the metabolic system. The final goal is to develop an effective anti-cancer drug with a low incidence of adverse events, since it does not act on normal tissue.

3. Researcher’s comments

Hiroyasu Esumi, Director of National Cancer Center Hospital East said, “The metabolomic technologies developed by IAB Keio University are among the best in the world. Thanks to these

technologies, we have made an unexpected discovery about the properties of cancer and found a clue for developing a revolutionary anti-cancer drug.”

Professor Tomiyoshi Soga at IAB said, “We have used the metabolomic analysis technologies developed thanks to the support of Yamagata Prefecture and the City of Tsuruoka to discover a type of metabolism selectively used by cancer cells. I am delighted that this is the first step in the quest to develop a new type of anti-cancer drug.”

Explanation of technical terms

*1. Metabolome
Collective name for the many thousands of types of metabolites (intermediates and products of metabolism) in cells, including amino acids, sugars, and lipids.
*2. Metabolism
Chemical (enzyme) reactions in the body. Substances taken in from outside the body are converted into other substances to create energy necessary for cells and life, as well as biopolymers such as proteins and nucleic acids.
*3. Citric acid cycle
Metabolic pathway for producing ATP, a source of energy, in organisms that use aerobic respiration. Other substances such as amino acids are produced in the citric acid cycle.
*4. ATP
Abbreviation of adenosine triphosphate. Energy source for all organisms.
*5. Enzymes
Proteins that increase the rate of metabolic reactions (converting substances into different substances).

Center for Research Promotion | Research asia research news
Further information:
http://www.keio.ac.jp/english/press_release/090520e.pdf
http://www.researchsea.com

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>