Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-Aging Gene Linked to High Blood Pressure

24.08.2009
Scientists reduce hypertension, reverse kidney damage, Results appear in latest issue of American Heart Association journal.

Researchers at the University of Oklahoma Health Sciences Center have shown the first link between a newly discovered anti-aging gene and high blood pressure. The results, which appear this month in the journal Hypertension, offer new clues on how we age and how we might live longer.

Persistent hypertension, or high blood pressure, is a risk factor for stroke, heart attack, heart failure, arterial aneurysm and is the leading cause of chronic kidney failure. Even a modest elevation of arterial blood pressure leads to shortened life expectancy.

Researchers, led by principal investigator Zhongjie Sun, tested the effect of an anti-aging gene called klotho on reducing hypertension. They found that by increasing the expression of the gene in laboratory models, they not only stopped blood pressure from continuing to rise, but succeeded in lowering it. Perhaps most impressive was the complete reversal of kidney damage, which is associated with prolonged high blood pressure and often leads to kidney failure.

“One single injection of the klotho gene can reduce hypertension for at least 12 weeks and possibly longer. Klotho is also available as a protein and, conceivably, we could ingest it as a powder much like we do with protein drinks,” said Sun, M.D., Ph.D., a cardiovascular expert at the OU College of Medicine.

Scientists have been working with the klotho gene and its link to aging since 1997 when it was discovered by Japanese scientists. This is the first study showing that a decline in klotho protein level may be involved in the progression of hypertension and kidney damage, Sun said. With age, the klotho level decreases while the prevalence of hypertension increases.

Researchers used one injection of the klotho gene in hypertensive research models and were able to markedly reduce blood pressure by the second week. It continued to decline steadily for the length of the project – 12 weeks. The klotho gene was delivered with a safe viral vector that is currently used for gene therapy. The virus is already approved by the U.S. Food and Drug Administration for use in humans.

Researchers are studying the gene’s effect for longer periods to test its ability to return blood pressure levels to normal. They also are looking at whether klotho can prevent hypertension.

The research, which was funded by the National Institutes of Health and the Reynolds Oklahoma Center on Aging at the OU Health Sciences Center, is available online at http://hyper.ahajournals.org/cgi/content/abstract/HYPERTENSIONAHA.109.134320v1

Diane Clay | EurekAlert!
Further information:
http://www.ouhsc.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>