Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Answers to Sleep Disorder and new paradigm for treatment and mechanism of neurodegenerative disease

21.05.2013
Researchers have identified a novel role of ATAXIN-2 as a posttranscriptional coactivator crucial for circadian behaviors and molecular clocks. The work was carried out by Chunghun Lim and colleagues during his post-doctoral time at Northwestern University.
ATAXIN-2 is a protein encoded by the ATXN2 gene conserved among different animal species. Mutations in human ATAXIN-2 gene have been implicated in neurodegenerative diseases such as spinocerebellar ataxia type 2 (SCA2), amyotrophic lateral sclerosis (ALS; also known as Lou Gehrig's disease after a famous baseball player in MLB), and Parkinson's disease. They show that ATAXIN-2 is a novel clock gene, which is important for sustaining robust circadian rhythms by coordinating translationally active protein complexes with a circadian translation factor TWENTY-FOUR.

The definition of a novel translational protein complex specific to circadian clock neurons as well as the first clear demonstration of a posttranscriptional coactivator function of ATAXIN-2 impacts on circadian clock mechanisms. Furthermore, their results provide important clues for molecular bases underlying the ATAXIN-2 dependent neurodegeneration.

Chunghun Lim, professor of the School of Nano-Bioscience and Chemical Engineering at the Ulsan National Institute of Science and Technology, was the key researcher in this work.

Circadian rhythms adaptively adjust internal biological clocks in animals to daily environmental changes. Chunghun Lim and Ravi Allada of Northwestern University in collaboration with Prof. Joonho Choe at the Korea Advanced Institute of Science and Technology (KAIST) previously showed that a novel Drosophila gene TWENTY-FOUR (TYF) activates PERIOD (PER) translation, one of the key clock genes, thereby maintaining rhythms in circadian behaviors.

In this study, Chunghun Lim and Ravi Allada took a proteomics approach to identify key factors important for TYF-dependent translation activation. They find a Drosophila homolog of human neurodegeneration gene ATAXIN-2 interacts with TYF. ATAXIN-2 binding domain is essential for TYF function in vivo. Moreover, depletion of ATAXIN-2 in the pacemaker neurons leads to impaired PER translation and poor behavioral rhythms similarly observed in TYF mutant flies.

The research data using in vitro cell cultures validate that depletion of ATAXIN-2 disrupts translationally active TYF protein complexes and suppresses TYF-dependent translation. In fact, ATAXIN-2 can directly activate translation from its associating mRNAs, strongly supporting that ATAXIN-2 is a critical post-transcriptional coactivator in TYF function.

“I believe our results could explain sleep disorders observed in SCA2 patients and will provide a new paradigm for understanding molecular pathogenesis and developing therapeutics of ATAXIN-2 related neurodegeneration diseases,” said Prof. Lim.
He also explained that one future plan will be to determine direct target mRNAs of ATAXIN-2 responsible for the pathogenesis in ATAXIN-2 dependent neurodegeneration and a long-term research goal will aim to more systematically screen for novel posttranscription factors involved in rhythmic circadian behaviors and neurodegeneration.

The research was supported by The National Institute of Neurological Disorders and the Defense Advanced Research Projects Agency.

A description of the new research has been published in the Science, world leading science journal, on May 16, 2013. (Title: ATAXIN-2 Activates PERIOD Translation to Sustain Circadian Rhythm in Drosophila.)

Ulsan National Institute of Science and Technology www.unist.ac.kr
Homepage of Chunghun Lim: https://sites.google.com/site/neurogeneticsribonomicslab
Journal information
Science
Funding information
The National Institute of Neurological Disorders and the Defense Advanced Research Projects Agency

Eunhee Song | Research asia research news
Further information:
http://www.unist.ac.kr
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>