Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Angiogenesis inhibitor improves brain tumor survival by reducing edema

01.04.2009
Mice treated with experimental drug cediranib live longer despite continued tumor growth

The beneficial effects of anti-angiogenesis drugs in the treatment of the deadly brain tumors called glioblastomas appear to result primarily from reduction of edema – the swelling of brain tissue – and not from any direct anti-tumor effect, according to a study from Massachusetts General Hospital (MGH) researchers.

Their report, to be published in the Journal of Clinical Oncology and receiving early online release, describes how treatment with the experimental drug cediranib reduced edema and improved survival in three mouse models of glioblastoma.

"Our findings suggest that antiangiogenesis therapy can increase patient survival even in the face of persistent tumor growth," says Rakesh K. Jain, PhD, director of the Steele Laboratory in the MGH Department of Radiation Oncology, the study's co-senior author. "In glioblastoma clinical trials, it is important to separate survival analysis from that of tumor response to therapy, since many factors combine to cause patient deaths."

Cediranib inhibits the potent angiogenesis factor VEGF, which is known to be abundantly present in glioblastomas and play a critical role in tumor blood vessel formation. A 2007 report from an ongoing clinical trial at the MGH Cancer Center found that the drug temporarily normalized abnormal, leaky blood vessels in glioblastomas that had recurred after surgery, radiation or chemotherapy – reducing edema and apparently the size of the tumors. But the exact mechanism underlying the effects was unclear, since the imaging technology used to track tumor progression could not distinguish between effects on blood vessels and an actual reduction in tumor size.

"We frequently see beneficial effects from drugs in patients without fully understanding the mechanism of action," says A. Gregory Sorensen, MD, of the MGH Radiology Department and Martinos Center for Biomedical Imaging, co-senior author of the report.. "The fact that anti-VEGF agents seem to provide clear benefits in some glioblastoma patients adds to the urgency of understanding the mechanisms that underlie these clinical improvements. We need to learn how to tailor our treatments to benefit even more patients."

The current study was designed to clarify whether cediranib's clinical effects primarily resulted from reduction of edema, which has significant consequences within the brain, or from a direct anti-tumor effect. The researchers implanted fluorescently labeled human or rat glioblastoma cells into the brains of mice and directly observed the tumors and surrounding tissue through transparent windows through the skull. Once tumors began growing, some of the mice received daily doses of cediranib, along with daily measurement of tumor growth, edema and of blood vessel structure and function.

Mice treated with cediranib were found to have significant reductions in the size and permeability of tumor-associated blood vessels, compared with animals that did not receive the drug. Although treatment did not reduce the rate of tumor growth, mice receiving cediranib lived significantly longer than the control animals. Another group of tumor-bearing mice received the steroid drug most commonly used to treat edema, and though those animals also lived longer than controls, the survival benefit was greater for the mice receiving cediranib.

"This is the first paper to show that vascular normalization alone, without chemotherapy, can be effective against some tumors by controlling edema and that this anti-edema effect is better than that of currently used steroids," Jain says. "Unfortunately, these anti-VEGF agents did not slow the tumor growth rate in these models; and since recurrent glioblastomas are highly resistant to currently used chemotherapy drugs, even if vascular normalization increases drug delivery, there may be little or no additional increase in patient survival. We urgently need to find better anti-tumor and anti-angiogenic agents."

Study co-author Tracy Batchelor, MD, director of the Pappas Center for Neuro-Oncology at MGH, notes, “This is an animal study involving a drug that is in ongoing phase 2 and 3 human trials here at MGH and elsewhere. We have already completed a phase 2 trial in glioblastoma patients that had very promising results, and the only way to definitively determine how cediranib and similar agents are helping patients with glioblastoma will be for more patients to participate in and complete these trials.”

Jain adds that it will be important to identify biomarkers that may indicate which patients are most likely to benefit from treatment with angiogenesis inhibitors and to identify the mechanisms by which glioblastomas and other tumors resist anti-VEGF therapies. Jain is the Cook Professor of Tumor Biology and Sorensen is an associate professor of Radiology at Harvard Medical School.

Walid Kamoun, PhD, and Carsten D. Ley, PhD, of the Steele Laboratory and Christian Farrar, PhD, Martinos Center for Biomedical Imaging – all at MGH – are co-lead authors of the Journal of Clinical Oncology paper. Additional co-authors are Annique Duyverman, MD, Johanna Lahdenranta, PhD, Delphine Lacorre, PhD, Emmanuelle di Tomasso, PhD, Dan G. Duda, PhD, DMD, Lance L. Munn, PhD, and Dai Fukumura, MD, PhD, of the Steele Lab. The study was supported by grants from the National Institutes of Health, the Susan G. Komen Foundation, the Damon Runyon Foundation, the U.S. Department of Defense, the Montesi Family Research Fund and AstraZeneca Pharmaceuticals, which manufacturers cediranib under the brand name RECENTIN.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $500 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Katie Marquedant | EurekAlert!
Further information:
http://www.mgh.harvard.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>