Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Angiogenesis inhibitor improves brain tumor survival by reducing edema

01.04.2009
Mice treated with experimental drug cediranib live longer despite continued tumor growth

The beneficial effects of anti-angiogenesis drugs in the treatment of the deadly brain tumors called glioblastomas appear to result primarily from reduction of edema – the swelling of brain tissue – and not from any direct anti-tumor effect, according to a study from Massachusetts General Hospital (MGH) researchers.

Their report, to be published in the Journal of Clinical Oncology and receiving early online release, describes how treatment with the experimental drug cediranib reduced edema and improved survival in three mouse models of glioblastoma.

"Our findings suggest that antiangiogenesis therapy can increase patient survival even in the face of persistent tumor growth," says Rakesh K. Jain, PhD, director of the Steele Laboratory in the MGH Department of Radiation Oncology, the study's co-senior author. "In glioblastoma clinical trials, it is important to separate survival analysis from that of tumor response to therapy, since many factors combine to cause patient deaths."

Cediranib inhibits the potent angiogenesis factor VEGF, which is known to be abundantly present in glioblastomas and play a critical role in tumor blood vessel formation. A 2007 report from an ongoing clinical trial at the MGH Cancer Center found that the drug temporarily normalized abnormal, leaky blood vessels in glioblastomas that had recurred after surgery, radiation or chemotherapy – reducing edema and apparently the size of the tumors. But the exact mechanism underlying the effects was unclear, since the imaging technology used to track tumor progression could not distinguish between effects on blood vessels and an actual reduction in tumor size.

"We frequently see beneficial effects from drugs in patients without fully understanding the mechanism of action," says A. Gregory Sorensen, MD, of the MGH Radiology Department and Martinos Center for Biomedical Imaging, co-senior author of the report.. "The fact that anti-VEGF agents seem to provide clear benefits in some glioblastoma patients adds to the urgency of understanding the mechanisms that underlie these clinical improvements. We need to learn how to tailor our treatments to benefit even more patients."

The current study was designed to clarify whether cediranib's clinical effects primarily resulted from reduction of edema, which has significant consequences within the brain, or from a direct anti-tumor effect. The researchers implanted fluorescently labeled human or rat glioblastoma cells into the brains of mice and directly observed the tumors and surrounding tissue through transparent windows through the skull. Once tumors began growing, some of the mice received daily doses of cediranib, along with daily measurement of tumor growth, edema and of blood vessel structure and function.

Mice treated with cediranib were found to have significant reductions in the size and permeability of tumor-associated blood vessels, compared with animals that did not receive the drug. Although treatment did not reduce the rate of tumor growth, mice receiving cediranib lived significantly longer than the control animals. Another group of tumor-bearing mice received the steroid drug most commonly used to treat edema, and though those animals also lived longer than controls, the survival benefit was greater for the mice receiving cediranib.

"This is the first paper to show that vascular normalization alone, without chemotherapy, can be effective against some tumors by controlling edema and that this anti-edema effect is better than that of currently used steroids," Jain says. "Unfortunately, these anti-VEGF agents did not slow the tumor growth rate in these models; and since recurrent glioblastomas are highly resistant to currently used chemotherapy drugs, even if vascular normalization increases drug delivery, there may be little or no additional increase in patient survival. We urgently need to find better anti-tumor and anti-angiogenic agents."

Study co-author Tracy Batchelor, MD, director of the Pappas Center for Neuro-Oncology at MGH, notes, “This is an animal study involving a drug that is in ongoing phase 2 and 3 human trials here at MGH and elsewhere. We have already completed a phase 2 trial in glioblastoma patients that had very promising results, and the only way to definitively determine how cediranib and similar agents are helping patients with glioblastoma will be for more patients to participate in and complete these trials.”

Jain adds that it will be important to identify biomarkers that may indicate which patients are most likely to benefit from treatment with angiogenesis inhibitors and to identify the mechanisms by which glioblastomas and other tumors resist anti-VEGF therapies. Jain is the Cook Professor of Tumor Biology and Sorensen is an associate professor of Radiology at Harvard Medical School.

Walid Kamoun, PhD, and Carsten D. Ley, PhD, of the Steele Laboratory and Christian Farrar, PhD, Martinos Center for Biomedical Imaging – all at MGH – are co-lead authors of the Journal of Clinical Oncology paper. Additional co-authors are Annique Duyverman, MD, Johanna Lahdenranta, PhD, Delphine Lacorre, PhD, Emmanuelle di Tomasso, PhD, Dan G. Duda, PhD, DMD, Lance L. Munn, PhD, and Dai Fukumura, MD, PhD, of the Steele Lab. The study was supported by grants from the National Institutes of Health, the Susan G. Komen Foundation, the Damon Runyon Foundation, the U.S. Department of Defense, the Montesi Family Research Fund and AstraZeneca Pharmaceuticals, which manufacturers cediranib under the brand name RECENTIN.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $500 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Katie Marquedant | EurekAlert!
Further information:
http://www.mgh.harvard.edu

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>