Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An injectable UW polymer could keep soldiers, trauma patients from bleeding to death

11.03.2015

Most military battlefield casualties die before reaching a surgical hospital. Of those soldiers who might potentially survive, most die from uncontrolled bleeding.

In some cases, there's not much medics can do -- a tourniquet won't stop bleeding from a chest wound, and clotting treatments that require refrigerated or frozen blood products aren't always available in the field.


A 3-D rendering of fibrin forming a blood clot, with PolySTAT (in blue) binding strands together.

Credit: William Walker, University of Washington

That's why University of Washington researchers have developed a new injectable polymer that strengthens blood clots, called PolySTAT. Administered in a simple shot, the polymer finds any unseen or internal injuries and starts working immediately.

The new polymer, described in a paper featured on the cover of the March 4 issue of Science Translational Medicine, could become a first line of defense in everything from battlefield injuries to rural car accidents to search and rescue missions deep in the mountains. It has been tested in rats, and researchers say it could reach human trials in five years.

In the initial study with rats, 100 percent of animals injected with PolySTAT survived a typically-lethal injury to the femoral artery. Only 20 percent of rats treated with a natural protein that helps blood clot survived.

"Most of the patients who die from bleeding die quickly," said co-author Dr. Nathan White, an assistant professor of emergency medicine who teamed with UW bioengineers and chemical engineers to develop the macromolecule.

"This is something you could potentially put in a syringe inside a backpack and give right away to reduce blood loss and keep people alive long enough to make it to medical care," he said.

The UW team was inspired by factor XIII, a natural protein found in the body that helps strengthen blood clots.

Normally after an injury, platelets in the blood begin to congregate at the wound and form an initial barrier. Then a network of specialized fibers -- called fibrin -- start weaving themselves throughout the clot to reinforce it.

If that scaffolding can't withstand the pressure of blood pushing against it, the clot breaks apart and the patient keeps bleeding.

Both PolySTAT and factor XIII strengthen clots by binding fibrin strands together and adding "cross-links" that reinforce the latticework of that natural bandage.

"It's like the difference between twisting two ropes together and weaving a net," said co-author Suzie Pun, the UW's Robert J. Rushmer Professor of Bioengineering. "The cross-linked net is much stronger."

But the synthetic PolySTAT offers greater protection against natural enzymes that dissolve blood clots. Those help during the healing process, but they work against doctors trying to keep patients from bleeding to death.

The enzymes, which cut fibrin strands, don't target the synthetic PolySTAT bonds that are now integrated into the clot. That helps keep the blood clots intact in the critical hours after an injury.

"We were really testing how robust the clots were that formed," said lead author Leslie Chan, a UW doctoral student in bioengineering. "The animals injected with PolySTAT bled much less, and 100 percent of them lived."

The synthetic polymer offers other advantages over conventional hemorrhaging treatments, said White, who also treats trauma patients at Harborview Medical Center.

Blood products are expensive, need careful storage, and they can grow bacteria or carry infectious diseases, he said. Plus, the hundreds of proteins introduced into a patient's body during a transfusion can have unintended consequences.

After a traumatic injury, the body also begins to lose a protein that's critical to forming fibrin. Once those levels drop below a certain threshold, existing treatments stop working and patients are more likely to die.

In the study, researchers found PolySTAT worked to strengthen clots even in cases where those fibrin building blocks were critically low.

The UW team also used a highly specific peptide that only binds to fibrin at the wound site. It does not bind to a precursor of fibrin that circulates throughout the body. That means PolySTAT shouldn't form dangerous clots that can lead to a stroke or embolism.

Though the polymer's initial safety profile looks promising, researchers said, next steps include testing on larger animals and additional screening to find out if it binds to any other unintended substances. They also plan to investigate its potential for treating hemophilia and for integration into bandages.

###

Funding came from the National Institutes of Health and its National Center for Advancing Translational Science, the UW Institute of Translational Health Sciences, the Washington Research Foundation, an NIH-supported UW Bioengineering Cardiovascular Training Grant and discretionary funds from private donations.

For more information, contact Pun at spun@uw.edu or White at whiten4@uw.edu.

Media Contact

Jennifer Langston
jlangst@uw.edu
206-543-2580

 @UW

http://www.uwnews.org 

Jennifer Langston | EurekAlert!

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>