Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amplification of a Stat5 gene produces excess oncogenic protein that drives prostate cancer spread

08.05.2013
An international group of investigators, led by researchers at Thomas Jefferson University's Kimmel Cancer Center, have solved the mystery of why a substantial percentage of castrate-resistant metastatic prostate cancer cells contain abnormally high levels of the pro-growth protein Stat5.

They discovered that the gene that makes the protein is amplified — duplicated many times over — in these cancer cells, which allows them to produce excess amounts of the oncogenic protein.

The study, reported in the May 7 issue of the American Journal of Pathology, found a direct association between the number of Stat5 genes in human prostate cancer cells and Stat5 protein levels, and also revealed that gene amplification and protein levels increased as prostate cancer metastasized and became resistant to castration (anti-androgen) therapy.

The finding is important since agents that inhibit the Stat5 pathway are currently entering clinical trials, says the study's senior author, Marja Nevalainen, M.D., Ph.D., associate professor of Cancer Biology, Medical Oncology, and Urology at Jefferson.

"Our latest findings on Stat5 provide further support for the idea that targeting Stat5 protein pharmacologically might provide powerful therapy for advanced prostate cancer," she says. "Our hope is that a successful agent might prevent some prostate tumors from spreading and might be able to contain metastasis that has already occurred and become castrate-resistant."

The discovery also suggests that testing Stat5 gene amplification in patients could provide a biomarker that identifies those patients most likely to respond to Stat5 inhibition, Dr. Nevalainen says.

Not only is Dr. Nevalainen testing Stat5 inhibitors developed by Astra Zeneca and Novartis in preclinical studies, her lab has also developed its own inhibitor, which is also being tested.

Dr. Nevalainen has long studied Stat5 in prostate cancer, and with her colleagues, has authored a number of crucial studies demonstrating the impact the gene and its protein can have on prostate cancer progression. "Stat5 isn't the only protein that drives prostate cancer, but it is a very important one," she says.

Stat5 is a transcription factor – a protein that can regulate expression of other genes. In 2003, Dr. Nevalainen discovered that Stat5 protein is critical for viability of prostate cancer cells and growth of prostate tumors in mice. In 2004, Dr. Nevalainen found that Stat5 inside a cell's nucleus is often over-expressed in high-grade human prostate cancer, and in 2005, she demonstrated that Stat5 activity was associated with recurrence of prostate cancer in patients who had already been treated. Then, in 2008 she showed that nuclear Stat5 was especially prevalent in recurrent prostate cancers that are resistant to hormone therapy. Most importantly, her research has demonstrated that blocking Stat5 in laboratory and in animal models effectively destroyed prostate cancer. "We know that Stat5 is absolutely critical to the survival of prostate cancer cells," she says.

In 2010, Dr. Nevalainen found that excess Stat5 in prostate cancer cells is linked to metastasis, and excess Stat5 expression predicts early disease recurrence and death from prostate cancer. This study was conducted to investigate why such over-expression of the protein occurs.

The researchers found amplification of the Stat5 gene in a significant fraction of 128 prostate cancer specimens from patients, and that Stat5 gene amplification was more frequently found in metastatic cancers that are no longer responsible to castration treatment (29 percent) and in high histological grade cancers (40 percent). Experiments in cell culture and in mice showed that increased Stat5 copy numbers conferred a growth advantage for tumors.

"Lots of cancers have chromosomal rearrangements that lead to amplification of pro-growth genes," says Dr. Nevalainen. "We don't know exactly why this happens, but it is related to imperfect cell division and unstable genomes."

While it is known that excess Stat5 protein predicts early recurrence of prostate cancer, development of metastatic disease and death from prostate cancer, researchers will need to determine if Stat5 gene amplification is also linked to those outcomes, she adds.

Researchers who contributed to the study included investigators from Georgetown University, the University of Helsinki in Finland, the University of Basel in Switzerland, and the University of Tampere in Finland. The authors declare no conflicts of interest.

The work was supported by grants from the National Institutes of Health, and the Academy of Finland.

Thomas Jefferson University (TJU), the largest freestanding academic medical center in Philadelphia, is nationally renowned for medical and health sciences education and innovative research. Founded in 1824, TJU includes Jefferson Medical College (JMC), one of the largest private medical schools in the country and ranked among the nation's best medical schools by U.S. News & World Report, and the Jefferson Schools of Nursing, Pharmacy, Health Professions, Population Health and the Graduate School of Biomedical Sciences. Jefferson University Physicians is TJU's multi-specialty physician practice consisting of the full-time faculty of JMC. Thomas Jefferson University partners with its clinical affiliate, Thomas Jefferson University Hospitals.

Jackie Kozloski | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>