Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With amino acid diet, mice improve after brain injury

08.12.2009
May set stage for treating brain damage in people

Neurology researchers have shown that feeding amino acids to brain-injured animals restores their cognitive abilities and may set the stage for the first effective treatment for cognitive impairments suffered by people with traumatic brain injuries.

"We have shown in an animal model that dietary intervention can restore a proper balance of neurochemicals in the injured part of the brain, and simultaneously improves cognitive performance," said study leader Akiva S. Cohen, Ph.D., a neuroscientist at The Children's Hospital of Philadelphia.

The study appears today in the online issue of the Proceedings of the National Academy of Sciences.

If these results in mice can be translated to human medicine, there would be a broad clinical benefit. Every 23 seconds, a man, woman or child in the United States suffers a traumatic brain injury (TBI). The primary cause of death and disability in children and young adults, TBI also accounts for permanent disabilities in more than 5 million Americans. The majority of those cases are from motor vehicle injuries, along with a rising incidence of battlefield casualties.

Although physicians can relieve the dangerous swelling that occurs after a TBI, there are currently no treatments for the underlying brain damage that brings in its wake cognitive losses in memory, learning and other functions.

The animals in the current study received a cocktail of three branched chain amino acids (BCAAs), specifically leucine, isoleucine and valine, in their drinking water. Previous researchers had shown that people with severe brain injuries showed mild functional improvements after receiving BCAAs through an intravenous line.

BCAAs are crucial precursors of two neurotransmitters—glutamate and gamma-aminobutyric acid, or GABA, which function together to maintain an appropriate balance of brain activity. Glutamate excites neurons, stimulating them to fire, while GABA inhibits the firing. Too much excitement or, too little, and the brain doesn't work properly. A TBI upsets the balance.

In particular, a TBI frequently damages the hippocampus, a structure deep in the brain involved in higher learning and memory. In the current study, the researchers found that an injury to the hippocampus reduced levels of BCAAs. Although overall levels of glutamate and GABA were unchanged, the loss of BCAAs disturbed the critical balance of neurotransmitters in the hippocampus, making some localized regions more excitable and others less excitable. Cohen's team tested the hypothesis that providing dietary BCAAs would restore the balance in neural response.

In this study, Cohen's study team first created standardized brain injuries in mice, and one week later compared the animals' conditioned fear response to that of uninjured mice. A week after receiving a mild electric shock in a specific cage, normal mice tend to "freeze" when placed in the same cage, anticipating another shock. The brain-injured mice demonstrated fewer freezing responses—a sign that they had partially lost that piece of learning.

On the other hand, brain-injured mice that received a diet of BCAAs showed the same normal response as the uninjured mice. The BCAA cocktail had restored their learning ability.

In addition to the behavioral results, the team conducted electrophysiological experiments in slices of hippocampus from brain-injured and non-injured mice, and showed that BCAA restored a normal balance of neural activity. "The electrophysiological results were consistent with what we saw in the animals' functional recovery," said Cohen.

If the results in mice can be reproduced in people, patients with traumatic brain injuries could receive the BCAAs in a drink. Cohen suggests that BCAAs as a dietary supplement could have a more sustained, measured benefit than that seen when patients receive BCAAs intravenously, in which the large IV dose may flood brain receptors and have more limited benefits.

Although much work remains to be done to translate the finding into a therapy, Cohen expects to collaborate over the next year with other researchers in an early-phase clinical trial of dietary BCAAs in patients with mild to moderate TBI.

The National Institutes of Health provided funding for this study. Cohen's co-authors were Jeffrey Cole, Ph.D., Christina M. Mitala, Ph.D., Suhali Kundu and Itzhak Nissim, Ph.D., all of Children's Hospital; Jaclynn A. Elkind of the University of Pennsylvania; and Ajay Verma, M.D., Ph.D., of the Uniformed Services University of the Health Sciences, Bethesda, Md. Cohen and Nissim are also on the faculty of the University of Pennsylvania School of Medicine.

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country, ranking second in National Institutes of Health funding. In addition, its unique family-centered care and public service programs have brought the 441-bed hospital recognition as a leading advocate for children and adolescents.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>