Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


With amino acid diet, mice improve after brain injury

May set stage for treating brain damage in people

Neurology researchers have shown that feeding amino acids to brain-injured animals restores their cognitive abilities and may set the stage for the first effective treatment for cognitive impairments suffered by people with traumatic brain injuries.

"We have shown in an animal model that dietary intervention can restore a proper balance of neurochemicals in the injured part of the brain, and simultaneously improves cognitive performance," said study leader Akiva S. Cohen, Ph.D., a neuroscientist at The Children's Hospital of Philadelphia.

The study appears today in the online issue of the Proceedings of the National Academy of Sciences.

If these results in mice can be translated to human medicine, there would be a broad clinical benefit. Every 23 seconds, a man, woman or child in the United States suffers a traumatic brain injury (TBI). The primary cause of death and disability in children and young adults, TBI also accounts for permanent disabilities in more than 5 million Americans. The majority of those cases are from motor vehicle injuries, along with a rising incidence of battlefield casualties.

Although physicians can relieve the dangerous swelling that occurs after a TBI, there are currently no treatments for the underlying brain damage that brings in its wake cognitive losses in memory, learning and other functions.

The animals in the current study received a cocktail of three branched chain amino acids (BCAAs), specifically leucine, isoleucine and valine, in their drinking water. Previous researchers had shown that people with severe brain injuries showed mild functional improvements after receiving BCAAs through an intravenous line.

BCAAs are crucial precursors of two neurotransmitters—glutamate and gamma-aminobutyric acid, or GABA, which function together to maintain an appropriate balance of brain activity. Glutamate excites neurons, stimulating them to fire, while GABA inhibits the firing. Too much excitement or, too little, and the brain doesn't work properly. A TBI upsets the balance.

In particular, a TBI frequently damages the hippocampus, a structure deep in the brain involved in higher learning and memory. In the current study, the researchers found that an injury to the hippocampus reduced levels of BCAAs. Although overall levels of glutamate and GABA were unchanged, the loss of BCAAs disturbed the critical balance of neurotransmitters in the hippocampus, making some localized regions more excitable and others less excitable. Cohen's team tested the hypothesis that providing dietary BCAAs would restore the balance in neural response.

In this study, Cohen's study team first created standardized brain injuries in mice, and one week later compared the animals' conditioned fear response to that of uninjured mice. A week after receiving a mild electric shock in a specific cage, normal mice tend to "freeze" when placed in the same cage, anticipating another shock. The brain-injured mice demonstrated fewer freezing responses—a sign that they had partially lost that piece of learning.

On the other hand, brain-injured mice that received a diet of BCAAs showed the same normal response as the uninjured mice. The BCAA cocktail had restored their learning ability.

In addition to the behavioral results, the team conducted electrophysiological experiments in slices of hippocampus from brain-injured and non-injured mice, and showed that BCAA restored a normal balance of neural activity. "The electrophysiological results were consistent with what we saw in the animals' functional recovery," said Cohen.

If the results in mice can be reproduced in people, patients with traumatic brain injuries could receive the BCAAs in a drink. Cohen suggests that BCAAs as a dietary supplement could have a more sustained, measured benefit than that seen when patients receive BCAAs intravenously, in which the large IV dose may flood brain receptors and have more limited benefits.

Although much work remains to be done to translate the finding into a therapy, Cohen expects to collaborate over the next year with other researchers in an early-phase clinical trial of dietary BCAAs in patients with mild to moderate TBI.

The National Institutes of Health provided funding for this study. Cohen's co-authors were Jeffrey Cole, Ph.D., Christina M. Mitala, Ph.D., Suhali Kundu and Itzhak Nissim, Ph.D., all of Children's Hospital; Jaclynn A. Elkind of the University of Pennsylvania; and Ajay Verma, M.D., Ph.D., of the Uniformed Services University of the Health Sciences, Bethesda, Md. Cohen and Nissim are also on the faculty of the University of Pennsylvania School of Medicine.

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country, ranking second in National Institutes of Health funding. In addition, its unique family-centered care and public service programs have brought the 441-bed hospital recognition as a leading advocate for children and adolescents.

John Ascenzi | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>