Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With amino acid diet, mice improve after brain injury

08.12.2009
May set stage for treating brain damage in people

Neurology researchers have shown that feeding amino acids to brain-injured animals restores their cognitive abilities and may set the stage for the first effective treatment for cognitive impairments suffered by people with traumatic brain injuries.

"We have shown in an animal model that dietary intervention can restore a proper balance of neurochemicals in the injured part of the brain, and simultaneously improves cognitive performance," said study leader Akiva S. Cohen, Ph.D., a neuroscientist at The Children's Hospital of Philadelphia.

The study appears today in the online issue of the Proceedings of the National Academy of Sciences.

If these results in mice can be translated to human medicine, there would be a broad clinical benefit. Every 23 seconds, a man, woman or child in the United States suffers a traumatic brain injury (TBI). The primary cause of death and disability in children and young adults, TBI also accounts for permanent disabilities in more than 5 million Americans. The majority of those cases are from motor vehicle injuries, along with a rising incidence of battlefield casualties.

Although physicians can relieve the dangerous swelling that occurs after a TBI, there are currently no treatments for the underlying brain damage that brings in its wake cognitive losses in memory, learning and other functions.

The animals in the current study received a cocktail of three branched chain amino acids (BCAAs), specifically leucine, isoleucine and valine, in their drinking water. Previous researchers had shown that people with severe brain injuries showed mild functional improvements after receiving BCAAs through an intravenous line.

BCAAs are crucial precursors of two neurotransmitters—glutamate and gamma-aminobutyric acid, or GABA, which function together to maintain an appropriate balance of brain activity. Glutamate excites neurons, stimulating them to fire, while GABA inhibits the firing. Too much excitement or, too little, and the brain doesn't work properly. A TBI upsets the balance.

In particular, a TBI frequently damages the hippocampus, a structure deep in the brain involved in higher learning and memory. In the current study, the researchers found that an injury to the hippocampus reduced levels of BCAAs. Although overall levels of glutamate and GABA were unchanged, the loss of BCAAs disturbed the critical balance of neurotransmitters in the hippocampus, making some localized regions more excitable and others less excitable. Cohen's team tested the hypothesis that providing dietary BCAAs would restore the balance in neural response.

In this study, Cohen's study team first created standardized brain injuries in mice, and one week later compared the animals' conditioned fear response to that of uninjured mice. A week after receiving a mild electric shock in a specific cage, normal mice tend to "freeze" when placed in the same cage, anticipating another shock. The brain-injured mice demonstrated fewer freezing responses—a sign that they had partially lost that piece of learning.

On the other hand, brain-injured mice that received a diet of BCAAs showed the same normal response as the uninjured mice. The BCAA cocktail had restored their learning ability.

In addition to the behavioral results, the team conducted electrophysiological experiments in slices of hippocampus from brain-injured and non-injured mice, and showed that BCAA restored a normal balance of neural activity. "The electrophysiological results were consistent with what we saw in the animals' functional recovery," said Cohen.

If the results in mice can be reproduced in people, patients with traumatic brain injuries could receive the BCAAs in a drink. Cohen suggests that BCAAs as a dietary supplement could have a more sustained, measured benefit than that seen when patients receive BCAAs intravenously, in which the large IV dose may flood brain receptors and have more limited benefits.

Although much work remains to be done to translate the finding into a therapy, Cohen expects to collaborate over the next year with other researchers in an early-phase clinical trial of dietary BCAAs in patients with mild to moderate TBI.

The National Institutes of Health provided funding for this study. Cohen's co-authors were Jeffrey Cole, Ph.D., Christina M. Mitala, Ph.D., Suhali Kundu and Itzhak Nissim, Ph.D., all of Children's Hospital; Jaclynn A. Elkind of the University of Pennsylvania; and Ajay Verma, M.D., Ph.D., of the Uniformed Services University of the Health Sciences, Bethesda, Md. Cohen and Nissim are also on the faculty of the University of Pennsylvania School of Medicine.

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country, ranking second in National Institutes of Health funding. In addition, its unique family-centered care and public service programs have brought the 441-bed hospital recognition as a leading advocate for children and adolescents.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>