Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alzheimer’s progression tracked prior to dementia

24.09.2013
For years, scientists have attempted to understand how Alzheimer’s disease harms the brain before memory loss and dementia are clinically detectable.

Most researchers think this preclinical stage, which can last a decade or more before symptoms appear, is the critical phase when the disease might be controlled or stopped, possibly preventing the failure of memory and thinking abilities in the first place.

Important progress in this effort is reported in October in Lancet Neurology. Scientists at the Charles F. and Joanne Knight Alzheimer Disease Research Center at Washington University School of Medicine in St. Louis, working in collaboration with investigators at the University of Maastricht in the Netherlands, helped to validate a proposed new system for identifying and classifying individuals with preclinical Alzheimer’s disease.

Their findings indicate that preclinical Alzheimer’s disease can be detected during a person’s life, is common in cognitively normal elderly people and is associated with future mental decline and mortality. According to the scientists, this suggests that preclinical Alzheimer’s disease could be an important target for therapeutic intervention.

A panel of Alzheimer’s experts, convened by the National Institute on Aging in association with the Alzheimer’s Association, proposed the classification system two years ago. It is based on earlier efforts to define and track biomarker changes during preclinical disease.

According to the Washington University researchers, the new findings offer reason for encouragement, showing, for example, that the system can help predict which cognitively normal individuals will develop symptoms of Alzheimer’s and how rapidly their brain function will decline. But they also highlight additional questions that must be answered before the classification system can be adapted for use in clinical care.

“For new treatments, knowing where individuals are on the path to Alzheimer’s dementia will help us improve the design and assessment of clinical trials,” said senior author Anne Fagan, PhD, research professor of neurology. “There are many steps left before we can apply this system in the clinic, including standardizing how we gather and assess data in individuals, and determining which of our indicators of preclinical disease are the most accurate. But the research data are compelling and very encouraging.”

The classification system divides preclinical Alzheimer’s into three stages:

Stage 1: Levels of amyloid beta, a protein fragment produced by the brain, begin to fall in the spinal fluid. This indicates that the substance is beginning to form plaques in the brain.

Stage 2: Levels of tau protein start to rise in the spinal fluid, indicating that brain cells are beginning to die. Amyloid beta levels are still abnormal and may continue to fall.

Stage 3: In the presence of abnormal amyloid and tau biomarker levels, subtle cognitive changes can be detected by neuropsychological testing. By themselves, these changes cannot establish a clinical diagnosis of dementia.

The researchers applied these criteria to research participants studied from 1998 through 2011 at the Knight Alzheimer Disease Research Center. The center annually collects extensive cognitive, biomarker and other health data on normal and cognitively impaired volunteers for use in Alzheimer’s studies.

The scientists analyzed information on 311 individuals age 65 or older who were cognitively normal when first evaluated. Each participant was evaluated annually at the center at least twice; the participant in this study with the most data had been followed for 15 years.

At the initial testing, 41 percent of the participants had no indicators of Alzheimer’s disease (stage 0); 15 percent were in stage 1 of preclinical disease; 12 percent were in stage 2; and 4 percent were in stage 3. The remaining participants were classified as having cognitive impairments caused by conditions other than Alzheimer’s (23 percent) or did not meet any of the proposed criteria (5 percent).

“A total of 31 percent of our participants had preclinical disease,” said Fagan. “This percentage matches findings from autopsy studies of the brains of older individuals, which have shown that about 30 percent of people who were cognitively normal had preclinical Alzheimer’s pathology in their brain.”

Scientists believe the rate of cognitive decline increases as people move through the stages of preclinical Alzheimer’s. The new data support this idea. Five years after their initial evaluation, 11 percent of the stage 1 group, 26 percent of the stage 2 group, and 52 percent of the stage 3 group had been diagnosed with symptomatic Alzheimer’s.

Individuals with preclinical Alzheimer’s disease were six times more likely to die over the next decade than older adults without preclinical Alzheimer’s disease, but researchers don’t know why.

“Risk factors for Alzheimer’s disease might also be associated with other life-threatening illnesses,” Fagan said. “It’s also possible that the presence of Alzheimer’s hampers the diagnosis and treatment of other conditions or contributes to health problems elsewhere in the body. We don’t have enough data yet to say, but it’s an issue we’re continuing to investigate.”

This research was supported by funding from the National Institute on Aging of the National Institutes of Health (NIH)(P01-AG003991, P50-AG05681, P01-AG02676), Internationale Stichting Alzheimer Onderzoek, the Center for Translational Molecular Medicine, Project Learn, the EU/EFPIA Innovative Medicines Initiative Joint Undertaking, and the Charles F. and Joanne Knight Alzheimer’s Disease Research Initiative.

Vos SJB, Xiong C, Visser PJ, Jasielec MS, Hassenstab J, Grant EA, Cairns NJ, Morris JC, Holtzman DM, Fagan AM. Preclinical Alzheimer’s disease and its outcome: a longitudinal cohort study. Lancet Neurology, published online Sept. 4, 2013.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>