Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Alzheimer’s progression tracked prior to dementia

For years, scientists have attempted to understand how Alzheimer’s disease harms the brain before memory loss and dementia are clinically detectable.

Most researchers think this preclinical stage, which can last a decade or more before symptoms appear, is the critical phase when the disease might be controlled or stopped, possibly preventing the failure of memory and thinking abilities in the first place.

Important progress in this effort is reported in October in Lancet Neurology. Scientists at the Charles F. and Joanne Knight Alzheimer Disease Research Center at Washington University School of Medicine in St. Louis, working in collaboration with investigators at the University of Maastricht in the Netherlands, helped to validate a proposed new system for identifying and classifying individuals with preclinical Alzheimer’s disease.

Their findings indicate that preclinical Alzheimer’s disease can be detected during a person’s life, is common in cognitively normal elderly people and is associated with future mental decline and mortality. According to the scientists, this suggests that preclinical Alzheimer’s disease could be an important target for therapeutic intervention.

A panel of Alzheimer’s experts, convened by the National Institute on Aging in association with the Alzheimer’s Association, proposed the classification system two years ago. It is based on earlier efforts to define and track biomarker changes during preclinical disease.

According to the Washington University researchers, the new findings offer reason for encouragement, showing, for example, that the system can help predict which cognitively normal individuals will develop symptoms of Alzheimer’s and how rapidly their brain function will decline. But they also highlight additional questions that must be answered before the classification system can be adapted for use in clinical care.

“For new treatments, knowing where individuals are on the path to Alzheimer’s dementia will help us improve the design and assessment of clinical trials,” said senior author Anne Fagan, PhD, research professor of neurology. “There are many steps left before we can apply this system in the clinic, including standardizing how we gather and assess data in individuals, and determining which of our indicators of preclinical disease are the most accurate. But the research data are compelling and very encouraging.”

The classification system divides preclinical Alzheimer’s into three stages:

Stage 1: Levels of amyloid beta, a protein fragment produced by the brain, begin to fall in the spinal fluid. This indicates that the substance is beginning to form plaques in the brain.

Stage 2: Levels of tau protein start to rise in the spinal fluid, indicating that brain cells are beginning to die. Amyloid beta levels are still abnormal and may continue to fall.

Stage 3: In the presence of abnormal amyloid and tau biomarker levels, subtle cognitive changes can be detected by neuropsychological testing. By themselves, these changes cannot establish a clinical diagnosis of dementia.

The researchers applied these criteria to research participants studied from 1998 through 2011 at the Knight Alzheimer Disease Research Center. The center annually collects extensive cognitive, biomarker and other health data on normal and cognitively impaired volunteers for use in Alzheimer’s studies.

The scientists analyzed information on 311 individuals age 65 or older who were cognitively normal when first evaluated. Each participant was evaluated annually at the center at least twice; the participant in this study with the most data had been followed for 15 years.

At the initial testing, 41 percent of the participants had no indicators of Alzheimer’s disease (stage 0); 15 percent were in stage 1 of preclinical disease; 12 percent were in stage 2; and 4 percent were in stage 3. The remaining participants were classified as having cognitive impairments caused by conditions other than Alzheimer’s (23 percent) or did not meet any of the proposed criteria (5 percent).

“A total of 31 percent of our participants had preclinical disease,” said Fagan. “This percentage matches findings from autopsy studies of the brains of older individuals, which have shown that about 30 percent of people who were cognitively normal had preclinical Alzheimer’s pathology in their brain.”

Scientists believe the rate of cognitive decline increases as people move through the stages of preclinical Alzheimer’s. The new data support this idea. Five years after their initial evaluation, 11 percent of the stage 1 group, 26 percent of the stage 2 group, and 52 percent of the stage 3 group had been diagnosed with symptomatic Alzheimer’s.

Individuals with preclinical Alzheimer’s disease were six times more likely to die over the next decade than older adults without preclinical Alzheimer’s disease, but researchers don’t know why.

“Risk factors for Alzheimer’s disease might also be associated with other life-threatening illnesses,” Fagan said. “It’s also possible that the presence of Alzheimer’s hampers the diagnosis and treatment of other conditions or contributes to health problems elsewhere in the body. We don’t have enough data yet to say, but it’s an issue we’re continuing to investigate.”

This research was supported by funding from the National Institute on Aging of the National Institutes of Health (NIH)(P01-AG003991, P50-AG05681, P01-AG02676), Internationale Stichting Alzheimer Onderzoek, the Center for Translational Molecular Medicine, Project Learn, the EU/EFPIA Innovative Medicines Initiative Joint Undertaking, and the Charles F. and Joanne Knight Alzheimer’s Disease Research Initiative.

Vos SJB, Xiong C, Visser PJ, Jasielec MS, Hassenstab J, Grant EA, Cairns NJ, Morris JC, Holtzman DM, Fagan AM. Preclinical Alzheimer’s disease and its outcome: a longitudinal cohort study. Lancet Neurology, published online Sept. 4, 2013.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>