Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alzheimer’s Disease: Cutting off Immune Response Promises New Approach to Therapy

20.12.2012
Researchers in Bonn, Germany, have identified a protein as a potential target for the treatment of Alzheimer’s disease.

The molecular complex is part of the immune system and a driving force for inflammatory responses of the brain. Blocking its activity may pave the way for new possibilities for therapy, the researchers report in the current issue of “Nature.” The study involved scientists from Germany, Spain and the United States. The Bonn site of the German Center for Neurodegenerative Diseases (DZNE) and the University of Bonn are leading contributors.

The complex named “NLRP3 inflammasome” is composed of several proteins and plays a key role in the immune system. It resembles a fire alarm sensor that triggers a chain reaction when activated. As a result, immune cells are mobilized and substances that foster inflammation are released. This process can be triggered by infections, which are subsequently suppressed by the immune response. However, in the case of Alzheimer’s disease, the activation of the molecular alarm may have negative consequences: nerve cells are damaged and die. Ultimately, this leads to the loss of brain function and mental capabilities in humans.

Alzheimer’s disease is accompanied with deposits in the brain. That these so-called “plaques” have the capability to activate the NLRP3 inflammasome had already been identified by investigating individual cells. But the exact effect on the organism was unknown. “It was unclear what consequences an increased activity of the NLRP3 inflammasome could have on the brain,” explains Prof. Michael Heneka, who conducts research at both, the DZNE and the University of Bonn. Working in a team with immune researcher Eicke Latz as well as with other colleagues, Heneka has now been able to show that the protein complex does in fact play a determining role in the development of Alzheimer’s disease.

Studies involved humans and mice

The researchers collected a comprehensive chain of evidences: they examined both the brains of deceased Alzheimer patients and of mice who exhibited behavioural disorders that are typically associated with Alzheimer’s disease. The researchers found an activated form of the NLRP3 inflammasome in both cases.

Looking at another group of mice, the scientists examined possibilities for suppressing inflammatory reactions. To achieve this, they removed the genes that trigger production of the NLRP3 inflammasome. Therefore, these mice were no longer able to synthesize the protein complex. As a result, the animals developed only relatively mild symptoms of the disease. Moreover, their brains showed only reduced amounts of the damaging plaques.

“We have stumbled upon a critical factor in the development process of Alzheimer’s. Given these findings it appears to be a very promising possibility to block the activity of the inflammasome,” comments Heneka. In his view, proper pharmaceuticals might be able to stop a chain reaction that would otherwise result in the inflammation of brain cells. “At present various options are being pursued to act upon the course of the disease,” says the neuroscientist. “Our results points to a new possibility. Nevertheless, we are still in the process of doing basic research.”

However, the group of scientists in Bonn is already making plans for the future. Eicke Latz’s team, which also made significant contributions to the latest study, has already begun to search for active components that could block the NLRP3 inflammasome. “The testing of potential substances in the laboratory would be a next step. We hope to start as early as next year,” says Heneka.

Original Publication:
“NLRP3 is activated in Alzheimer´s disease and contributes to pathology in APP/PS1 mice,” Michael T. Heneka, Markus P. Kummer, Andrea Stutz, Andrea Delekate, Stephanie Schwartz, Ana Vieira Saecker, Angelika Griep, Daisy Axt, Anita Remus, Te-Chen Tzeng, Ellen Gelpi, Annett Halle, Martin Korte, Eicke Latz, Douglas Golenbock, Nature, DOI: http://10.1038/nature11729

The German Center for Neurodegenerative Diseases (DZNE) investigates the causes of diseases of the nervous system and develops strategies for prevention, treatment and care. It is an institution of the Helmholtz Association of German Research Centres with sites in Berlin, Bonn, Dresden, Göttingen, Magdeburg, Munich, Rostock/Greifswald, Tübingen and Witten. The DZNE cooperates closely with universities, their clinics and other research facilities. Its cooperation partners in Bonn are the Caesar Research Center, the University of Bonn and the University Clinic Bonn. Website: http://www.dzne.de/en

Further Information:
Another press release (also under embargo) on this publication in Nature is available through the press office of the University of Bonn. Please, refer to
http://www3.uni-bonn.de/einrichtungen/universitaetsverwaltung/
organisationsplan/dezernat-8/presse-und-kommunikation

Dr. Marcus Neitzert | idw
Further information:
http://www.dzne.de/en

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>