Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alzheimer´s: disease-associated biomarker changes in cerebrospinal fluid of transgenic mice

18.07.2013
In the current issue of Science Translational Medicine, Luís Maia and Stephan Kaeser from the Hertie Institute for Clinical Brain Research at the University of Tübingen and the German Center for Neurodegenerative Diseases report changes of amyloid-beta and tau proteins in the cerebrospinal fluid (CSF) of mouse models of Alzheimer's disease (AD) that are virtually identical to those seen in pre-clinical AD.

The new research suggests that AD in its earliest stage already causes changes in CSF-levels of tau and amyloid-beta and that these changes are both the results of the build-up of the amyloid-beta protein in brain, which is characteristic for the disease.

This study opens new perspectives on the use of these mouse models in translational research say the senior authors of the study Mathias Jucker and Matthias Staufenbiel. In particular, in therapy trials of sporadic and familial AD the mouse models should be instrumental to predict the CSF changes in patients. They also could help to discover new early biomarkers in CSF and other bodily fluids.

Processes related to AD start at least 10 to 20 years before the onset of the first clinical symptoms. At the moment of diagnosis, the disease has already caused severe brain damage. Thus, there is a critical need to characterize this pre-clinical stage of the disease and to identify patients at risk well ahead of any clinical complaint. This is particularly crucial for early treatment aiming to stop the disease before the emergence of irreversible symptoms and signs. Biomarkers could act as reliable predictors and indicators of a disease process. They offer one of the most promising paths, when it comes to early AD-diagnosis. Biomarkers include proteins in blood or spinal fluid, genetic variations (mutations) or brain changes detectable by imaging.

Very early biomarkers in humans that show changes at least a decade before AD symptoms are noted, can be found in the cerebrospinal fluid (CSF). In the CSF the amyloid-beta protein is decreased while the tau protein is increased. The causes for these CSF changes have been largely speculative mainly because of the lack of useful animal models that also mimic these changes.

In order to tackle this point, the scientists first developed highly-sensitive methods to reliably assess amyloid-beta and tau in AD transgenic mice (these mice develop amyloid plaques, one hallmark of the Alzheimer’s pathology in the brain). Then, by assessing amyloid-beta and tau at different time points the authors could show that amyloid-beta goes down in the CSF after the first amyloid plaques appear in the brain and, remarkably, this decrease in amyloid-beta is followed by an increase in tau in the cerebrospinal fluid. The latter is notable, because the mice neither develop the second hallmark of AD pathology, namely the tau deposits, so called neurofibrillary tangles, nor global neuronal loss. Thus it is shown for the first time that the increase of tau in the CSF can occur independently of neurofibrillary tangles or frank neuron loss (as these do not occur in the mouse models used).

Citation
L. F. Maia, S. A. Kaeser, J. Reichwald, M. Hruscha, P. Martus, M. Staufenbiel, M. Jucker

Changes in amyloid-b and Tau in the cerebrospinal fluid of transgenic mice overexpressing amyloid precursor protein. Sci. Transl. Med. 5, 194rexx (2013)

Silke Jakobi | idw
Further information:
http://www.hih-tuebingen.de

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>