Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Alzheimer´s: disease-associated biomarker changes in cerebrospinal fluid of transgenic mice

In the current issue of Science Translational Medicine, Luís Maia and Stephan Kaeser from the Hertie Institute for Clinical Brain Research at the University of Tübingen and the German Center for Neurodegenerative Diseases report changes of amyloid-beta and tau proteins in the cerebrospinal fluid (CSF) of mouse models of Alzheimer's disease (AD) that are virtually identical to those seen in pre-clinical AD.

The new research suggests that AD in its earliest stage already causes changes in CSF-levels of tau and amyloid-beta and that these changes are both the results of the build-up of the amyloid-beta protein in brain, which is characteristic for the disease.

This study opens new perspectives on the use of these mouse models in translational research say the senior authors of the study Mathias Jucker and Matthias Staufenbiel. In particular, in therapy trials of sporadic and familial AD the mouse models should be instrumental to predict the CSF changes in patients. They also could help to discover new early biomarkers in CSF and other bodily fluids.

Processes related to AD start at least 10 to 20 years before the onset of the first clinical symptoms. At the moment of diagnosis, the disease has already caused severe brain damage. Thus, there is a critical need to characterize this pre-clinical stage of the disease and to identify patients at risk well ahead of any clinical complaint. This is particularly crucial for early treatment aiming to stop the disease before the emergence of irreversible symptoms and signs. Biomarkers could act as reliable predictors and indicators of a disease process. They offer one of the most promising paths, when it comes to early AD-diagnosis. Biomarkers include proteins in blood or spinal fluid, genetic variations (mutations) or brain changes detectable by imaging.

Very early biomarkers in humans that show changes at least a decade before AD symptoms are noted, can be found in the cerebrospinal fluid (CSF). In the CSF the amyloid-beta protein is decreased while the tau protein is increased. The causes for these CSF changes have been largely speculative mainly because of the lack of useful animal models that also mimic these changes.

In order to tackle this point, the scientists first developed highly-sensitive methods to reliably assess amyloid-beta and tau in AD transgenic mice (these mice develop amyloid plaques, one hallmark of the Alzheimer’s pathology in the brain). Then, by assessing amyloid-beta and tau at different time points the authors could show that amyloid-beta goes down in the CSF after the first amyloid plaques appear in the brain and, remarkably, this decrease in amyloid-beta is followed by an increase in tau in the cerebrospinal fluid. The latter is notable, because the mice neither develop the second hallmark of AD pathology, namely the tau deposits, so called neurofibrillary tangles, nor global neuronal loss. Thus it is shown for the first time that the increase of tau in the CSF can occur independently of neurofibrillary tangles or frank neuron loss (as these do not occur in the mouse models used).

L. F. Maia, S. A. Kaeser, J. Reichwald, M. Hruscha, P. Martus, M. Staufenbiel, M. Jucker

Changes in amyloid-b and Tau in the cerebrospinal fluid of transgenic mice overexpressing amyloid precursor protein. Sci. Transl. Med. 5, 194rexx (2013)

Silke Jakobi | idw
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>