Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Alzheimer’s: Cellular Mechanism Provides Explanation Model for Declining Memory Performance


Loss of neuronal contacts impairs nerve cells that control activity of the hippocampus

Alzheimer’s disease triggers memory and learning disorders. To date, the causes are poorly understood. Now, researchers of the German Center for Neurodegenerative Diseases (DZNE) are shedding light on a possible mechanism: As Martin Fuhrmann and co-workers describe in the journal “Neuron,” loss of neuronal contacts that release the neurotransmitter acetylcholine impairs the function of specific nerve cells.

This microscopy image depicts the neuronal network of the hippocampus including O-LM interneurons (red and yellow) and other cell types. The current study shows that interneuron dysfunction may contribute to learning deficits associated with Alzheimer’s disease. Source: DZNE / Julia Steffen

The affected “interneurons” regulate activity of the hippocampus, which is considered to be the brain’s memory control center. The results of this study may pave the way for a more effective treatment of memory disorders associated with Alzheimer’s.

Brain cells are interlinked with each other into a freeway for nerve impulses. For this network to work properly, different types of cells have to harmonize to fulfill their tasks. For instance, while some brain cells pass on signals in a way that triggers firing of downstream cells, others slow down signal transmission. “Usually, there is a fine-tuned balance between excitation and inhibition.

It is presumed that this interplay is disturbed by Alzheimer’s,” explains DZNE researcher Dr. Martin Fuhrmann. “This may cause nerve cells to become hyperactive, which leads to discharges that resemble epileptic conditions. In Alzheimer’s disease, the hippocampus is among the first brain areas to be affected and the region where learning and memory processes occur.”

Inhibitory Cells Under the Microscope

Consequently, the Bonn-based neurobiologist and his team colleagues investigated a specific class of neurons that are referred to as “O-LM interneurons”. They act upon other hippocampal neurons and thereby restrain their activity. This effect is called “inhibition.”

To date, little was known on the role these interneurons play in Alzheimer’s disease. Hence, the researcher trained mice – healthy specimen and others who displayed typical symptoms of Alzheimer’s – to recognize a certain environment. Moreover, Fuhrmann and his colleagues used microscopy techniques to track how the interneurons adapted to the learning task.

Usually, during learning existing connections between neurons are modified and new ones created. Indeed, the researchers observed such changes happening at the interneurons of the healthy mice. However, in the rodents that exhibited symptoms of Alzheimer’s, cellular wiring was disturbed and connections were not established in some cases. Besides, these mice had problems to recognize their training environment.

What caused the faulty wiring? The researchers found out that this effect was triggered by the loss of a specific set of cellular connections that normally reach out to the interneurons. “Already in the early stages of Alzheimer’s cholinergic projections degenerate. Their name derives from the fact that they release a neurotransmitter called ‘acetylcholine’,” Fuhrmann says.

“Some of these connections usually link up to the interneurons we investigated. When they get lost this has direct impact on the interneurons. Their cellular wiring becomes dysfunctional, which impairs their ability to inhibit others cells.”

Study Results Support the “Cholinergic Hypothesis”

It has long been suspected that memory decline associated with Alzheimer’s may be caused by the loss of cholinergic projections. Reduction of these cellular contacts leads to a deficiency of acetylcholine. Hence, one treatment approach is to counteract the shortage of the neurotransmitter through medication, which turned out to be not successful on the long-term. However, the current work elucidates how acetylcholine might be related to memory function on the cellular level.

“Our study now points to a mechanism that may be relevant for humans. The loss of cholinergic connections impairs the regulating ability of hippocampal interneurons. This worsens memory performance,” Fuhrmann explains. “Looking ahead, these findings could help to develop drugs to treat memory problems caused by Alzheimer’s more effectively than it is possible today.”

Original publication
Dysfunction of somatostatin positive interneurons associated with memory deficits in an Alzheimer’s disease model.
Lena C. Schmid, Manuel Mittag, Stefanie Poll, Julia Steffen, Jens Wagner, Hans-Rüdiger Geis, Inna Schwarz, Boris Schmidt, Martin K. Schwarz, Stefan Remy und Martin Fuhrmann.
Neuron, DOI: 10.1016/j.neuron.2016.08.034

Dr. Marcus Neitzert
DZNE, Communications
+49 (0) 228 / 43302-271

Dr. Marcus Neitzert | idw - Informationsdienst Wissenschaft
Further information:

Further reports about: Alzheimer’s Cellular DZNE Neuron acetylcholine cholinergic nerve cells neurons

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>