Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alzheimer's drug candidate may be first to prevent disease progression

15.12.2011
Salk scientists develop new drug that improves memory and prevents brain damage in mice

A new drug candidate may be the first capable of halting the devastating mental decline of Alzheimer's disease, based on the findings of a study published today in PLoS one.

When given to mice with Alzheimer's, the drug, known as J147, improved memory and prevented brain damage caused by the disease. The new compound, developed by scientists at the Salk Institute for Biological Studies, could be tested for treatment of the disease in humans in the near future.

"J147 enhances memory in both normal and Alzheimer's mice and also protects the brain from the loss of synaptic connections," says David Schubert, the head of Salk's Cellular Neurobiology Laboratory, whose team developed the new drug. "No drugs on the market for Alzheimer's have both of these properties."

Although it is yet unknown whether the compound will prove safe and effective in humans, the Salk researchers' say their results suggest the drug may hold potential for treatment of people with Alzheimer's.

As many as 5.4 million Americans suffer from Alzheimer's, according to the National Institutes of Health. More than 16 million will have the disease by 2050, according to Alzheimer's Association estimates, resulting in medical costs of over $1 trillion per year.

The disease causes a steady, irreversible decline in brain function, erasing a person's memory and ability to think clearly until they are unable to perform simple tasks such as eating and talking, and it is ultimately fatal. Alzheimer's is linked to aging and typically appears after age 60, although a small percentage of families carry a genetic risk for earlier onset. Among the top ten causes of death, Alzheimer's is the only one without a way to prevent, cure or slow disease progression.

Scientists are unclear what causes Alzheimer's, which appears to emerge from a complex mix of genetics, environment and lifestyle factors. So far, the drugs developed to treat the disease, such as Aricept, Razadyne and Exelon, only produce fleeting memory improvements and do nothing to slow the overall course of the disease.

To find a new type of drug, Schubert and his colleagues bucked the trend within the pharmaceutical industry of focusing exclusively on the biological pathways involved in the formation of amyloid plaques, the dense deposits of protein that characterize the disease. To date, Schubert says, all amyloid-based drugs have failed in clinical trials.

Instead, the Salk team developed methods for using living neurons grown in laboratory dishes to test whether or not new synthetic compounds were effective at protecting the brain cells against several pathologies associated with brain aging. Based on the test results from each chemical iteration of the lead compound, which was originally developed for treatment of stroke and traumatic brain injury, they were able to alter its chemical structure to make a much more potent Alzheimer's drug.

"Alzheimer's is a complex disease, but most drug development in the pharmaceutical world has focused on a single aspect of the disease--the amyloid pathway," says Marguerite Prior, a research associate in Schubert's lab, who led the project along with Qi Chen, a former Salk postdoctoral researcher. "In contrast, by testing these compounds in living cell cultures, we can determine what they do against a range of age-related problems and select the best candidate that addresses multiple aspects of the disease, not just one."

With a promising compound in hand, the researchers shifted to testing J147 as an oral medication in mice. Working with Amanda Roberts, a professor of molecular neurosciences at The Scripps Research Institute, they conducted a range of behavioral tests that showed that the drug improved memory in normal rodents.

The Salk researchers went on to show that it prevented cognitive decline in animals with Alzheimer's and that mice and rats treated with the drug produced more of a protein called brain-derived neurotrophic factor (BDNF), a molecule that protects neurons from toxic insults, helps new neurons grow and connect with other brain cells, and is involved in memory formation.

Because of the broad ability of J147 to protect nerve cells, the researchers believe that it may also be effective for treating other neurological disorders, such as Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis (ALS), as well as stroke.

The research was funded by the Fritz B. Burns Foundation, the National Institutes of Health, the Bundy Foundation and the Alzheimer's Association.

Andy Hoang | EurekAlert!
Further information:
http://www.salk.edu

More articles from Health and Medicine:

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

nachricht Camouflage apples
22.03.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>