Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Altered Microbiome Prevalent in the Diseased Esophagus

04.08.2009
Gastroesophageal reflux diseases , or GERD, affects about 10 million people in the United States, yet the cause and an unexpected increase in its prevalence over the last three decades remains unexplainable.

Now, researchers have discovered that GERD is associated with global alteration of the microbiome in the esophagus.

The findings, reported in the August 1, 2009 issue of Gastroenterology, may provide for the foundation for further study of the condition as a microecological disease with new treatment possibilities.

The findings of an altered microbiome may have profound implications for treating diseases of the esophagus, among the most common disorders affecting Western populations. In fact, about 40% of adults experience heartburn symptoms at least once a month. Chronic inflammation associated with GERD can lead to the development of Barrett’s esophagus, precancerous condition. The incidence of cancer of the esophagus has increased six-fold since the 1970s--the fastest increasing cancer in the Western world.

“These findings have opened a new approach to understanding the pathogenesis of reflux-related disorders,” states Zhiheng Pei, MD, PhD, assistant professor of pathology and medicine at NYU Langone Medical Center and lead author of the study. “At this time, we don’t yet know whether the changes in bacterial populations are triggering GERD or are simply a response to it. But if changes in the bacterial population do indeed cause reflux, it may be possible to design new therapies with antibiotics, probiotic bacteria or prebiotics.”

Researchers collected and sequenced bacteria from the esophagus of 34 patients, both healthy and those suffering from GERD (specifically esophagitis and Barrett’s esophagus). They found a high concentration of Streptococcus in the esophagus of healthy patients. In contrast, an altered type of microbiome dominated by Gram-negative bacteria was contained in greater proportions in those patients with esophagitis and Barrett’s esophagus.

The human microbiome is comprised of all the microorganisms that reside in or on the human body, as well as all their DNA, or genomes. Microbial cells in the human body are estimated to outnumber human cells by a factor of ten to one. These communities, or microbiomes, however remain largely unstudied, leaving almost entirely unknown their influence upon human development, physiology, immunity and nutrition.

In order to analyze the makeup of these microbial organisms, the National Institutes of Health (NIH) launched the Human Microbiome Project in 2007 and awarded $115 million in research grants over five years to examine the relationship between the microbiome in a specific niche in the body to a particular disease. This study was sponsored by the NIH to examine how changes in microbioal populations correlate with changes in human health.

About NYU Langone Medical Center
Located in New York City, NYU Langone Medical Center is a premier center for health care, biomedical research, and medical education. For over 167 years, NYU physicians and researchers have contributed to the practice and science of medicine. Today the Medical Center consists of NYU School of Medicine; Rusk Institute of Rehabilitation Medicine, the first and largest facility of its kind; NYU Hospital for Joint Diseases, a leader in musculoskeletal care; and such nationally recognized programs as the NYU Cancer Institute, the NYU Child Study Center, and the NYU Cardiac and Vascular Institute.

Dorie Klissas | Newswise Science News
Further information:
http://www.nyumc.org

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>