Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Allergy Protects Against Toxins

25.11.2013
IMMUNE RESPONSE TRIGGERED BY HONEYBEE VENOM SUPPORTS HYPOTHESIS ON THE ORIGIN OF ALLERGIES

Allergy-like immune reactions could represent a mechanism of the body that protects it against toxins. This surprising conclusion has been reached by scientists at Stanford University, USA, working on a research project co-financed by the Austrian Science Fund FWF.

The recently published findings prove that honeybee venom triggers an immune response in mice associated with the formation of IgE antibodies, which are also typical for allergic responses. These IgEs then confer protection against higher amounts of the venom subsequently administered to the mice. Thus, for the first time, IgEs were observed as having a direct protective function against a venom - a finding that substantiates a controversial hypothesis on the emergence of allergies formulated in the 1990s.

Allergies are quite unnecessary: instead of fighting microbes that pose a threat to health, the immune system targets harmless pollens, hairs or dust particles. The question as to why the body puts up such a fight against harmless substances is one that preoccupies scientists all over the world. A study by an Erwin Schrödinger Fellow of the Austrian Science Fund FWF, which has been currently published in the journal Immunity, gives new impetus to a controversial hypothesis for the explanation of such allergic reactions.

TOXIN PROTECTS AGAINST MORE TOXIN

Dr. Philipp Starkl, who is using his fellowship to collaborate with Prof. Stephen J. Galli and his team at the Department of Pathology at Stanford University School of Medicine, summarises the results of the joint study as follows: "Mice, to whom we had previously administered small amounts of honeybee venom, subsequently displayed astonishing resistance to larger volumes of the toxin. As in the case with a vaccination, the body appeared to build a kind of immune protection against the bee venom." Interestingly, however, completely different responses in humans are also known - in some unfortunate people repeated contact with bee venom causes allergic reactions or even an anaphylactic shock. IgE-type antibodies are mainly responsible for this response.

Dr. Starkl and his colleagues investigated the question as to whether these antibodies are also involved in the reactions observed in mice. To establish this, honeybee venom was administered to three different mouse strains, in which the functioning of an immune reaction based on IgE was prevented in different ways. The results showed that, unlike the previously examined "normal" mice strains, these mice were unable to form any protection against honeybee venom. Therefore, IgEs seem to have a positive function in mice. This finding patently contradicts what was already known from humans, in who IgE antibodies are mainly seen as causing allergic reactions. It had been suspected that a positive function existed beyond this (for example in the immune response to parasites); however, it had not been possible to demonstrate it directly up to now.

EVOLUTION FOLLOWS FUNCTION

The Stanford team though was not very surprised to discover this positive function of IgE. Dr. Starkl, who, together with his Belgian colleague Dr. Thomas Marichal, is co-first author of the current publication, explains: "In our view, the assumption that the function of IgE antibodies is limited to triggering allergic reactions always fell short of the mark. Otherwise, IgEs would surely have been eliminated in the course of evolution, a consideration that also underlies the so-called toxin hypothesis."

According to this hypothesis, the body can build protection against toxic substances using IgE antibodies and allergic reactions. Thus, IgEs would have fulfilled a very important role in human evolution - which only relinquished its significance with the development of increasingly protected lifestyles of humans. Furthermore, according to the hypothesis, allergic reactions are extreme or uncontrolled forms of the protection mechanism. The "underemployment" of this response in modern times could then actually contribute to its tendency to malfunction or overreact.

The toxin hypothesis, which was proposed by Margie Profet in 1991, has been hotly contested up to now - but never been refuted. The research carried out by the FWF Erwin Schrödinger Fellow now provides the first experimental finding that substantiates it - and demonstrates, once again, the importance of keeping an open mind in science.

Original publication: T. Marichal, P. Starkl, L. L. Reber, J. Kalesnikoff, H. C. Oettgen, M. Tsai, M. Metz, und S. J. Galli, A Beneficial Role for Immunoglobulin E in Host Defense against Honeybee Venom, Immunity (2013), http://dx.doi.org/10.1016/j.immuni.2013.10.005

Image and text will be available online from 10 am CET on Monday, 25 November 2013, at:

http://www.fwf.ac.at/en/public_relations/press/pv201311-en.html

Scientific Contact:
Dr. Philipp Starkl
Stanford University
Department of Pathology
269 Campus Drive
CCSR 3260
Stanford, CA 94305, USA
T +1 / 650 / 736 0069
E pstarkl@stanford.edu
W http://gallilab.stanford.edu
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Copy Editing and Distribution:
PR&D - Public Relations for Research & Education Mariannengasse 8
1090 Vienna, Austria
T +43 / 1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Judith Sandberger | PR&D
Further information:
http://www.fwf.ac.at

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>