Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Allergies and wheezing illnesses in childhood may be determined in the womb

26.10.2010
A child’s chances of developing allergies or wheezing is related to how he or she grew at vital stages in the womb, according to scientists from the University of Southampton.

The new research, funded by the Medical Research Council (MRC) and the British Lung Foundation, and undertaken at Southampton General Hospital, reveals that fetuses which develop quickly in early pregnancy but falter later in pregnancy are likely to go on to develop allergies and asthma as children. Scientists believe this is due to changes in the development of their immune system and lungs.

A fetus that grows too slowly in the womb is also more likely to become an infant who wheezes with common colds, possibly as a result of narrower airways in its lungs.

“Childhood allergies and asthma have become an epidemic in developed countries over the last 50 years. This research shows that in order to combat this, we need to understand more about how babies develop in the womb,” comments Keith Godfrey, Professor of Epidemiology and Human Development at the University of Southampton and a consultant in dermatology at Southampton General Hospital.

“We already know that a baby’s growth in the womb has an important influence on susceptibility to obesity and heart disease in later life, but this research provides some of the most direct evidence yet that changes in how the baby’s immune system and lungs develops before birth can predispose them to some of the commonest childhood illnesses.”

For the research, published in the Journal Thorax, University of Southampton scientists at the MRC Epidemiology Unit based at Southampton General Hospital studied more than 1,500 three year-old children who were taking part in the Southampton Women’s Survey, the UK’s largest study of women and their offspring. The Survey has studied how a woman’s diet and lifestyle before and during pregnancy affects their baby’s growth in the womb, and is monitoring how these early life influences determine health and development during childhood.

The team discovered evidence of sensitivity to common allergens (atopy) in 27 per cent of children who had developed quickly in early pregnancy but faltered later in pregnancy, as compared with 4 per cent in those with a slow early growth trajectory and quicker growth in late pregnancy.

Professor Stephen Holgate, from the Medical Research Council, says: “Unravelling the complex interplay between immunity and disease, over the course of a person’s life, including before they are even born, is a core part of the MRC’s research strategy. Furthering our understanding of the body’s natural resilience is critical to developing new advances in the treatment of infectious diseases, autoimmune diseases and allergies.”

Ian Jarrold, Research Manager at the British Lung Foundation, says: “Children’s lung health can be complex so this research, funded by the British Lung Foundation, is a considerable step forward in understanding why some children are more likely to develop allergies and asthma.

“The most commonly reported long-term illnesses in children and babies are conditions of the respiratory system. Increasing our understanding of childhood lung conditions is vital for developing new ways of diagnosing and treating lung diseases earlier in life.”

Sophie Docker | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>