Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alcohol activates cellular changes that make tumor cells spread

28.10.2009
Researchers at Rush University Medical Center explain link between alcohol and cancer

Alcohol consumption has long been linked to cancer and its spread, but the underlying mechanism has never been clear.

Now, researchers at Rush University Medical Center have identified a cellular pathway that may explain the link.

In a study published in the current issue of Alcoholism: Clinical and Experimental Research, the researchers found that alcohol stimulates what is called the epithelial–to–mesenchymal transition, in which run-of-the-mill cancer cells morph into a more aggressive form and begin to spread throughout the body.

"Our data are the first to show that alcohol turns on certain signals inside a cell that are involved in this critical transition," said Christopher Forsyth, PhD, assistant professor of medicine and biochemistry at Rush University Medical Center and lead author of the study.

The epithelial-to-mesenchymal transition is a hot area of research right now, implicated in the process whereby cancer cells become metastatic. A large body of laboratory and clinical research suggests that it plays a key role in making cancer cells aggressive.

"Cancer cells become dangerous when they metastasize," Forsyth said. "Surgery can remove a tumor, but aggressive tumor cells invade tissues throughout the body and take over. If we can thwart this transition, we can limit cancer's toll."

The researchers treated colon and breast cancer cell lines with alcohol and then looked for the biochemical hallmarks of the epithelial-to-mesenchymal transition, including evidence of a transcription factor called Snail and of the receptor for epidermal growth factor. Snail controls the epithelial-to-mesenchymal transition; when overexpressed in mice, it induces the formation of multiple tumors. Epidermal growth factor is required by many cancer cells. "They need lots of it," Forsyth said. "They are addicted to it."

Laboratory tests showed that alcohol activated both these and other biochemicals characteristic of the epithelial-to-mesenchymal transition. Tests also demonstrated that the alcohol-treated cells had lost their tight junctions with adjacent cells, a preparation for migrating, as metastatic cells do.

In addition, Forsyth and his colleagues found that the same roster of biomarkers was activated in normal intestinal cells treated with alcohol, suggesting that alcohol not only worsens the profile of existing cancer cells but also may initiate cancer by stimulating the epithelial-to-mesenchymal transition.

Other researchers at Rush involved in the study were Yueming Tang, PhD, Maliha Shaikh, MS, Dr. Lijuan Zhang and Dr. Ali Keshavarzian. Research support was provided in part by the National Institutes of Health.

About Rush:

Rush University Medical Center includes a 674-bed (staffed) hospital; the Johnston R. Bowman Health Center; and Rush University (Rush Medical College, College of Nursing, College of Health Sciences and the Graduate College).

Rush is currently constructing a 14-floor, 806,000-square-foot hospital building at the corner of Ashland Avenue and Congress Parkway. The new hospital, scheduled to open in 2012, is the centerpiece of a $1-billion, 10-year campus redevelopment plan called the Rush Transformation, which also includes a new orthopedics building (to open in Fall 2009), a new parking garage and central power plant completed in June 2009, renovations of selected existing buildings and demolition of obsolete buildings. The new hospital is being designed and built to conserve energy and water, reduce waste and use sustainable building materials. Rush is seeking Leadership in Energy and Environmental Design (LEED) gold certification from the U.S. Green Building Council. It will be the first full-service "green" hospital in Chicago.

Rush's mission is to provide the best possible care for our patients. Educating tomorrow's health care professional, researching new and more advanced treatment options, transforming our facilities and investing in new technologies—all are undertaken with the drive to improve patient care now, and for the future.

Sharon Butler | EurekAlert!
Further information:
http://www.rush.edu

More articles from Health and Medicine:

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

The RWI/ISL-Container Throughput Index started off well in 2018

22.02.2018 | Business and Finance

FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation

22.02.2018 | Health and Medicine

Histology in 3D: new staining method enables Nano-CT imaging of tissue samples

22.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>