Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air Pollution Exposure at Certain Life Stages Affects Chances of Developing Premenopausal Breast Cancer

21.04.2011
Exposure to air pollution early in life and when a woman gives birth to her first child may alter her DNA and may be associated with premenopausal breast cancer later in life, researchers at the University at Buffalo have shown.

The findings indicated that higher air pollution exposure at birth may alter DNA methylation, which may increase levels of E-cadherin, a protein important to the adhesion of cells, a function that plays an essential role in maintaining a stable cellular environment and assuring healthy tissues.

Methylation is a chemical process that has been implicated in determining which genes in a cell are active, a process essential to normal cellular function.

Women with breast cancer who lived in a region with more air pollution were more likely to have the alteration in the DNA in their tumor than those who lived in a less-polluted region, results showed.

Higher air pollution concentration at the time of first child birth also was associated with changes in p16, a gene involved in tumor suppression, according to findings.

Results of the research were presented April 6 at the 2011 American Association for Cancer Research meeting in Orlando, Fla.

Lead investigator Katharine Dobson, MPH, an epidemiology doctoral student and research assistant in UB's Department of Social and Preventive Medicine, says of the findings: "To our knowledge, this is the first study to examine exposure to ambient air pollution at key points in a woman's lifetime.

"The investigation looked for an association between exposure to pollution and alterations to DNA that influence the presence or absence of key proteins. Such genetic changes are thought to be major contributors to cancer development and progression, including at very early stages," Dobson says.

The study is based on data from the Western New York Exposures and Breast Cancer (WEB) study, which collected information from 1,170 women with recently diagnosed breast cancer and 2,116 healthy women who lived in New York's Erie and Niagara counties between 1996 and 2001. This research involved only cancer cases.

Participants provided information on where they were born, where they lived at the time of their first menstrual period, and, if they had children, where they lived when they bore their first child. Data from air monitors operating in the relevant time periods was used to determine the amount of particulate matter at each participant's residence at those time periods. Air pollution data from 87 sites in Western New York was matched with residence location at year of birth, year of menarche and year of first child birth.

"We found that decreased E-cadherin promoter methylation was associated with higher exposure at birth, and increased p16 methylation with higher exposure at the time of a first child birth," says Dobson.

"For breast cancer cases, menopausal status appeared to modify the association between air pollution exposure and E-cadherin promoter methylation, with premenopausal women more susceptible to these early exposures than postmenopausal women."

More research is needed to determine the role of air pollution in DNA methylation in breast cancer development and progression, and to address changing air pollution contents and levels over time, Dobson notes

Jo L. Freudenheim, PhD; Menghua Tao, MD, PhD; Jing Nie, PhD; and Matthew Bonner, PhD, all from UB, contributed to the study, as well as researchers from Lombardi Comprehensive Cancer Center, Georgetown University, Washington D.C.; Roswell Park Cancer Institute, Buffalo, N.Y.; Potomac Hospital, Woodbridge, Va.; and University of Nevada Health Sciences System, Las Vegas, Nev.

The study was funded by the National Cancer Institute.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Lois Baker | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>