Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air pollution alters immune function, worsens asthma symptoms

06.10.2010
Exposure to dirty air is linked to decreased function of a gene that appears to increase the severity of asthma in children, according to a joint study by researchers at Stanford University and the University of California, Berkeley.

While air pollution is known to be a source of immediate inflammation, this new study provides one of the first pieces of direct evidence that explains how some ambient air pollutants could have long-term effects.

The findings, published in the October 2010 issue of the Journal of Allergy and Clinical Immunology, come from a study of 181 children with and without asthma in the California cities of Fresno and Palo Alto.

The researchers found that air pollution exposure suppressed the immune system's regulatory T cells (Treg), and that the decreased level of Treg function was linked to greater severity of asthma symptoms and lower lung capacity. Treg cells are responsible for putting the brakes on the immune system so that it doesn't react to non-pathogenic substances in the body that are associated with allergy and asthma. When Treg function is low, the cells fail to block the inflammatory responses that are the hallmark of asthma symptoms.

The findings have potential implications for altered birth outcomes associated with polluted air, much the same as those noted for the effects of cigarette smoke.

"When it came out that cigarettes can cause molecular changes, it meant the possibility that mothers who smoked could affect the DNA of their children during fetal development," said study lead author Dr. Kari Nadeau, pediatrician at Stanford's Lucile Packard Children's Hospital and an assistant professor of allergy and immunology at Stanford's School of Medicine. "Similarly, these new findings suggest the possibility of an inheritable effect from environmental pollution."

Forty-one participants came from the Fresno Asthmatic Children's Environment Study (FACES), a longitudinal study led by principal investigator Dr. Ira Tager, professor of epidemiology at UC Berkeley's School of Public Health, and co-principal investigator S. Katharine Hammond, UC Berkeley professor and chair of environmental health sciences. The researchers also recruited 30 children from Fresno who did not have asthma.

"I'm not aware of any other studies that have looked at how chemicals can alter cells so early in the regulatory process, and then connected that effect to clinical symptoms," said Tager. "There are people who still question the direct link between air pollution and human health, but these findings make the health impact of pollutants harder to deny."

Fresno was chosen because it is located in California's Central Valley, where trapped hot air mixes with high traffic and heavy agriculture to create some of the highest levels of air pollution in the country. It is also a region known for its high incidence of asthma: Nearly one in three children there have the condition, earning Fresno the nickname, "The Asthma Capitol of California."

The researchers compared the participants from Fresno with 80 children, half with asthma and half without, in the relatively low-pollution city of Palo Alto, Calif. The children were matched by age, gender and asthma status, among other variables. The children were tested for breathing function, allergic sensitivity and Treg cells in the blood.

Daily air quality data came from California Air Resources Board monitoring stations. The researchers calculated each child's annual average exposure to polycyclic aromatic hydrocarbons (PAH), a byproduct of fossil fuel and a major pollutant in vehicle exhaust.

The study found that the annual average exposure to PAH was 7 times greater for the children in Fresno compared with the kids in Palo Alto. Levels of ozone and particulate matter were also significantly higher in Fresno.

Not surprisingly, the study found that the children in Fresno had lower overall levels of Treg function and more severe symptoms of asthma than the children in Palo Alto. For example, the non-asthmatic children in Fresno had Treg function results that were similar to the children with asthma in Palo Alto.

The study authors correlated increased exposure to PAH with methylation of the gene, Forkhead box transcription factor (Foxp3), which triggers Treg cell development. Methylation effectively disables the gene's function, leading to reduced levels of Treg cells. The connection between Treg function and the severity of asthma symptoms held for children in both groups.

While previous studies have found associations between pollution – especially motor vehicle exhaust – and an increased risk of developing asthma, few have traced its molecular pathway so completely, the study authors said.

"The link between diesel exhaust and asthma could simply have been that the particulates were irritating the lungs," said Nadeau. "What we found is that the problems are more systemic. This is one of the few papers to have linked from A to Z the increased exposure to ambient air pollution with suppressed Treg cell levels, changes in a key gene and increased severity of asthma symptoms."

The researchers noted that Treg cells are important for other autoimmune disorders, so the implications of this study could go beyond asthma.

Other co-authors of the study are Dr. John Balmes, UC Berkeley professor of environmental health sciences; Elizabeth Noth and Boriana Pratt, UC Berkeley researchers at FACES; and Cameron McDonald-Hyman, research assistant at Stanford University's School of Medicine.

The National Institutes of Health, U.S. Environmental Protection Agency and the American Lung Association helped support this research.

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu

Further reports about: Ambient Air Faces air pollutant health services immune system

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>