Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Something Is in the Air. Ozone Can Lead to More Allergens in Grass Pollen

23.08.2010
Ozone affects pollen allergens: at ozone levels typical of photochemical smog, more allergens are formed in pollen. This connection has been demonstrated in the rye plant and is now being published in the prestigious Journal of Allergy Clinical Immunology.

The project funded by the Austrian Science Fund FWF shows that elevated ozone levels during maturation increase the protein and allergen contents of rye pollen. This points to a relationship between current environmental problems due to climate change and the rise in allergies.

It's on everyone's lips, especially during the summer months when photochemical smog engulfs the world's cities. Environmental pollution and climate change both contribute to the increasingly frequent incidences observed. While this is a major health problem in itself, there are now indications that elevated ozone levels also raise the allergen content of pollen. A team from the Medical University of Vienna and the Austrian Institute of Technology have investigated the reasons for this phenomenon.

OZONE STIMULATES RYE
The team behind project leader Prof. Rudolf Valenta of the Centre for Pathophysiology, Infectiology and Immunology at the Medical University of Vienna cultivated two different rye cultivars under controlled environmental conditions. One group of plants was exposed to elevated ozone concentrations (79 parts per billion) for part of the time. This value is more than three times the normal ozone concentration at ground level, i.e. 22 ppb, and corresponds to the health-endangering peak values that occur on hot days in Vienna. A control group was grown at normal ozone levels for subsequent comparison with the high-ozone group.

When the pollen was mature, it was harvested and collected for further study. It yielded very convincing results, as Prof. Valenta explains: "First, we were able to show that the higher ozone concentrations led to a marked elevation of the protein content in both cultivars. Further analysis showed that allergens of groups 1, 5 and 6 contribute to this increase, as does another allergen, profilin. Even in the second rye cultivar, increased ozone exposure during pollen maturation led to a sharp rise in group 1 allergens and profilin."

ALLERGEN = ALLERGY?
This result alone would seem to show that higher ozone levels can increase the allergic potential of certain grasses. However, "more allergens" does not necessarily translate to "more allergies". It was clear to Prof. Valenta and his team that potential allergens are not always recognized by the immune system and therefore do not always give rise to allergies. "A study from 2007 shows that ozone can actually decrease the allergenicity of rye allergens , comments Prof. Valenta. "So there may be more allergens, as our work shows, but whether these would react with human IgE antibodies and cause actual allergies was not clear."

However, another experiment soon provided a clear answer to this question: protein extracts from both rye cultivars were incubated with IgE antibodies from allergic patients. The results showed that the protein extracts from ozone-stressed plants reacted more strongly with the IgE antibodies, which are involved in allergic reactions, than those of the control plants, meaning that the former are more allergenic.

Consequently, the team around Prof. Valenta, Dr. Thomas Reichenauer and Prof. Verena Niederberger, managed to demonstrate in this FWF-funded project in a well controlled set of experiments that environmental problems such as rising ozone concentrations at ground level may bear some of the responsibility for the constant increase in allergic disorders in our society in recent years.

Original publication: Exposure of rye (Secale cereale) cultivars to elevated ozone levels increases the allergen content in pollen, J. Eckl-Dorna, B. Klein, T.G. Reichenauer, V. Niederberger, R. Valenta, J Allergy Clin Immunol. doi:10.1016/j.jaci.2010.06.012

Scientific Contact:
Prof. Rudolf Valenta
Medical University of Vienna
Centre for Pathophysiology, Infectiology and Immunology Währinger Gürtel 18-20 1090 Vienna, Austria M +43 / 699 / 12 57 0519 E Rudolf.valenta@meduniwien.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at

Medical University of Vienna | PR&D
Further information:
http://www.fwf.ac.at/en/public_relations/press/pv201008-en.html
http://www.prd.at
http://www.meduniwien.ac.at

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>