Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New aggressive HIV strain leads to faster AIDS development

28.11.2013
A recently discovered HIV strain leads to significantly faster development of AIDS than currently prevalent forms, according to new research from Lund University in Sweden.

The period from infection to development of AIDS was the shortest reported among HIV-1 types, at around five years.

There are over 60 different epidemic strains of HIV-1 in the world, and geographic regions are often dominated by one or two of these. If a person becomes infected with two different strains, they can fuse and a recombined form can occur.

"Recombinants seem to be more vigorous and more aggressive than the strains from which they developed", explained Angelica Palm, a doctoral student at Lund University.

... more about:
»African public sector »Aids »HIV »HIV flora »HIV-1

The recombinant studied is called A3/02 and is a cross between the two most common strains in Guinea-Bissau, West Africa - 02AG and A3. It has previously been described by Joakim Esbjörnsson, a postdoctoral fellow at the University of Oxford, who is a co-author of the study.

So far, the new strain has only been identified in West Africa, but other studies have shown that the global spread of different recombinants is increasing. In countries and regions with high levels of immigration, such as the US and Europe, the trend is towards an increasingly mixed and complex HIV flora, unlike in the beginning of the epidemic when a small number of non-recombinant variants of the virus dominated. There is therefore reason to be wary of HIV recombinants in general.

"HIV is an extremely dynamic and variable virus. New subtypes and recombinant forms of HIV-1 have been introduced to our part of the world, and it is highly likely that there are a large number of circulating recombinants of which we know little or nothing. We therefore need to be aware of how the HIV-1 epidemic changes over time", said Patrik Medstrand, Professor of Clinical Virology at Lund University.

The research is based on a unique long-term follow-up of HIV-infected individuals in Guinea-Bissau, a project run by Lund University. In future research, Angelica Palm and her colleagues hope to be able to continue researching the characteristics of recombinant viruses and the presence of these among HIV carriers in Europe.

For health services, the new research results mean a need to be aware that certain HIV-1 types can be more aggressive than others, according to the research team.

Publication:

'Faster progression to AIDS and AIDS-related death among seroincident individuals infected with recombinant HIV-1 A3/CRF02_AG compared to sub-subtype A3'

Authors: Angelica Palm, Joakim Esbjörnsson, Fredrik Månsson, Anders Kvist, Per-Erik Isberg, Antonio Biague, Zacarias José da Silva, Marianne Jansson, Hans Norrgren and Patrik Medstrand

Journal of Infectious Diseases, 2013, http://www.ncbi.nlm.nih.gov/pubmed/23935204

Contact:

Angelica Palm
doctoral student
Department of Experimental Medical Science
Lund University
+46 46 222 01 19
angelica.palm@med.lu.se
Patrik Medstrand
Professor of Clinical Virology
Department of Laboratory Medicine in Malmö
Lund University
+46 46 222 14 89
+46 708 41 57 97
patrik.medstrand@med.lu.se
http://www.ncbi.nlm.nih.gov/pubmed/23935204

Patrik Medstrand | EurekAlert!
Further information:
http://www.lu.se

Further reports about: African public sector Aids HIV HIV flora HIV-1

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>