Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New aggressive HIV strain leads to faster AIDS development

28.11.2013
A recently discovered HIV strain leads to significantly faster development of AIDS than currently prevalent forms, according to new research from Lund University in Sweden.

The period from infection to development of AIDS was the shortest reported among HIV-1 types, at around five years.

There are over 60 different epidemic strains of HIV-1 in the world, and geographic regions are often dominated by one or two of these. If a person becomes infected with two different strains, they can fuse and a recombined form can occur.

"Recombinants seem to be more vigorous and more aggressive than the strains from which they developed", explained Angelica Palm, a doctoral student at Lund University.

... more about:
»African public sector »Aids »HIV »HIV flora »HIV-1

The recombinant studied is called A3/02 and is a cross between the two most common strains in Guinea-Bissau, West Africa - 02AG and A3. It has previously been described by Joakim Esbjörnsson, a postdoctoral fellow at the University of Oxford, who is a co-author of the study.

So far, the new strain has only been identified in West Africa, but other studies have shown that the global spread of different recombinants is increasing. In countries and regions with high levels of immigration, such as the US and Europe, the trend is towards an increasingly mixed and complex HIV flora, unlike in the beginning of the epidemic when a small number of non-recombinant variants of the virus dominated. There is therefore reason to be wary of HIV recombinants in general.

"HIV is an extremely dynamic and variable virus. New subtypes and recombinant forms of HIV-1 have been introduced to our part of the world, and it is highly likely that there are a large number of circulating recombinants of which we know little or nothing. We therefore need to be aware of how the HIV-1 epidemic changes over time", said Patrik Medstrand, Professor of Clinical Virology at Lund University.

The research is based on a unique long-term follow-up of HIV-infected individuals in Guinea-Bissau, a project run by Lund University. In future research, Angelica Palm and her colleagues hope to be able to continue researching the characteristics of recombinant viruses and the presence of these among HIV carriers in Europe.

For health services, the new research results mean a need to be aware that certain HIV-1 types can be more aggressive than others, according to the research team.

Publication:

'Faster progression to AIDS and AIDS-related death among seroincident individuals infected with recombinant HIV-1 A3/CRF02_AG compared to sub-subtype A3'

Authors: Angelica Palm, Joakim Esbjörnsson, Fredrik Månsson, Anders Kvist, Per-Erik Isberg, Antonio Biague, Zacarias José da Silva, Marianne Jansson, Hans Norrgren and Patrik Medstrand

Journal of Infectious Diseases, 2013, http://www.ncbi.nlm.nih.gov/pubmed/23935204

Contact:

Angelica Palm
doctoral student
Department of Experimental Medical Science
Lund University
+46 46 222 01 19
angelica.palm@med.lu.se
Patrik Medstrand
Professor of Clinical Virology
Department of Laboratory Medicine in Malmö
Lund University
+46 46 222 14 89
+46 708 41 57 97
patrik.medstrand@med.lu.se
http://www.ncbi.nlm.nih.gov/pubmed/23935204

Patrik Medstrand | EurekAlert!
Further information:
http://www.lu.se

Further reports about: African public sector Aids HIV HIV flora HIV-1

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>