Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The most aggressive forms of breast cancer elude cellular control mechanisms in order to expand

25.11.2010
Scientists at IRB Barcelona have provided new data on how certain types of aggressive breast cancer bypass tumour suppression mechanisms.

About 30% of breast cancer patients have tumours that show rapid growth and invasion through the body. A common denominator in all of these cases is the presence of a large number of Her2 proteins in tumour cellular membranes.

Consequently, these aggressive tumours are referred to as HER2+. Scientists working in the Metastasis Laboratory (MetLab) at IRB Barcelona headed by ICREA researcher Roger Gomis, have described the molecular mechanism that induces HER2+ tumours to ignore the signals that protect cells from excessive growth. The study is published this week in the specialized journal Cancer Research.

Certain external molecules bind to the Her family proteins, thus instructing the cell to divide. However, when cells have multiple copies of the Her2 gene, as is the case of HER2+ patients, they show uncontrolled division and do not respect the signals from their milieu. The prospects for HER2+ patients changed dramatically about ten years ago when the drug Herceptin came onto the market. This agent binds to Her2 to inhibit its proliferative activity, thereby leading to an improved prognosis and greater survival.

LIP disobeys the body¡¯s defense system
When cells detect potential harm, they activate a series of protective responses which often lead to cell death or senescence (no growth). All these mechanisms are systems through which the cell can avoid the irreversible errors that lead them to generate tumours. This explains why tumour cells are removed from the body and replaced by healthy ones. In this context, tumour suppression mechanisms are of particular relevance, among these that induced by the hormone TGF-¦Â and the senescence caused by genes that contribute to the development of malignant cells (OIS).

Through experiments using metastatic cells from patients and animal models, the researchers have discovered that Her2 not only accelerates cell division but also evades these cell arrest systems. Her2 stimulates the production of the protein Lip, which deactivates the mechanisms that prevent cell division mediated by TGF-¦Â and the senescence mediated by OIS, thereby leading to accelerated division. ¡°Lip is the baddie in the film. It affects TGF-¦Â and OIS function, both tumour suppression mechanisms¡±, explains Gomis.

Towards more rational drug administration
One of the problems associated with Herceptin is that after long periods of treatment patients begin to develop drug resistance. This study shows that tumour cells that produce an excess of Lip continue to grow in the presence of the drug. This observation indicates that part of the resistance derives from the increase in Lip shown by these individuals.

"In patients that have an alteration in Her2 plus an increase in Lip, treatment with Herceptin may not be as effective. It should be remembered that this drug acts only against the membrane protein Her2", explains Gomis. These discoveries highlight the need to rationalise drug administration, from patient to patient, and to provide new data for the design of novel pharmaceutical agents against cancer that improve its diagnosis and treatment.

This study has involved the collaboration of Joan Massagu¨¦, Chairman of the Cancer Biology and Genetics Program at the Memorial Sloan-Kettering Cancer Center, New York City, assessor to the MetLab at IRB Barcelona, and adjunct director of the same institute, and has been supported by funding from the BBVA Foundation and the Ministry of Science and Innovation.

Reference article:
HER2 Silences Tumor Suppression in Breast Cancer Cells by Switching Expression of C/EBPb Isoforms
Anna Arnal-Estap¨¦, Maria Tarragona, M¨°nica Morales, Marc Guiu, Cristina Nadal, Joan Massagu¨¦ and Roger R. Gomis.

Cancer Research (2010) [DOI: 10.1158/0008-5472.CAN-10-0869]

Nuria Noriega | EurekAlert!
Further information:
http://www.irbbarcelona.org

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>