Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Age-related decline in sleep quality might be reversible

02.04.2014

Sleep is essential for human health. But with increasing age, many people experience a decline in sleep quality, which in turn reduces their quality of life. Scientists at the Max Planck Institute (MPI) for Biology of Ageing in Cologne have investigated the mechanisms by which ageing impairs sleep in the fruit fly. Their findings suggest that age-related sleep decline can be prevented and might even be reversible.

To uncover basic age-related sleep mechanisms, the Max Planck scientists studied the fruit fly Drosophila melanogaster, a classical model organism in ageing research. „Drosophila’s sleep has many features in common with that of humans, including the decline in quality“, says Luke Tain of the MPI for Biology of Ageing.


The fruit fly Drosophila melanogaster has a life expectancy of about eight weeks and is one of the model organisms scientists at the MPI for Biology of Ageing use to uncover what happ

Wolfgang Weiss for the Max Planck Institute for Biology of Ageing

„Like humans, flies sleep at night and are active during the day. We can observe when and how long flies sleep. We can also determine their sleep quality by measuring how often they wake. This allows us to study the effects of specific substances or other sleep-influencing factors such as age and genetic disposition.“

Ageing researchers Athanasios Metaxakis, Luke Tain, and Sebastian Grönke, in the department of MPI Director Linda Partridge, discovered that a reduced activity in the IIS signalling pathway leads to improved sleep quality at night and higher activity levels at day. A “signalling pathway” is a biological method of transferring information, and via those pathways, the cell can respond to external conditions like the state of food supply.

„In our study, we described the role of the IIS pathway in regulating sleep and activity through the neurotransmitters octopamine and dopamine“, explains Tain. „What makes this pathway so interesting to us is the fact that it is evolutionarily conserved. This means that its components and functions are similar in diverse species from simple organisms like fruit flies to mice and even humans. Furthermore, we were able to improve sleep quality by administering therapeutic agents.”

Moreover, the scientists found out that day activity and night sleep are regulated by two distinct signalling pathways, night sleep being mediated through TOR and dopaminergic signalling. Surprisingly, if TOR’s activity is acutely inhibited by treatment with the therapeutic agent Rapamycin, sleep quality improves even in old flies, suggesting that age-related sleep decline is not only preventable, but also reversible.

The scientists will follow up on their findings. Luke Tain: „Given the high evolutionarily conservation of IIS and TOR function, our results implicate potential therapeutic targets to improve sleep quality in humans. This would be our longer-term goal. The next step however, is to find out whether these mechanisms also work in higher animals like mice.“

Original publication:
Lowered Insulin Signalling Ameliorates Age-Related Sleep Fragmentation in Drosophila. Athanasios Metaxakis, Luke S. Tain, Sebastian Grönke, Oliver Hendrich, Yvonne Hinze, Ulrike Birras, and Linda Partridge. PLOS Biology, April 1, 2014.

Weitere Informationen:

http://www.age.mpg.de

Sabine Dzuck | Max-Planck-Institut

Further reports about: Drosophila IIS MPI Max-Planck-Institut Partridge TOR activity age-related decline flies humans pathway signalling sleep

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>