Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advance Cuts Brain Mapping Time from Years to Months

31.03.2009
In this week's open-access journal PLoS Biology, research teams at the University of Utah John A. Moran Eye Center and the University of Colorado at Boulder report technical advances that have reduced the time it takes to process high-speed "color" ultrastructure mapping of brain regions down to a few months.

Mapping the billions of connections in the brain is a grand challenge in neuroscience. The current method for mapping interconnected brain cells involves the use of room-size microscopes known as transmission electron microscopes (TEMs).

Until now the process of mapping even small areas of the brain using these massive machines would have required several decades. In this week's open-access journal PLoS Biology, research teams at the University of Utah John A. Moran Eye Center and the University of Colorado at Boulder report technical advances that have reduced the time it takes to process high-speed "color" ultrastructure mapping of brain regions down to a few months.

These advances did not require the invention of new electron microscopes. The technical leap comes mostly from new powerful software that “takes over” the building, connecting and viewing of terabyte scale pictures produced by TEMs. Perhaps just as important is the fact that these researchers are now making these technologies available worldwide to scientists in multiple fields of research. “Our goals were to unleash a global network of electron microscopes and provide web-accessible imagery for battalions of brain network analysts,” said Robert Marc, Ph.D., Director of Research for the Moran Eye Center at the University of Utah.

Marc and this team of researchers have been working on this project for eight years. They have refined the software and molecular tools to where they are now able to share them globally. “This changes the playing field for building brain maps from a few specialized laboratories to the desktops of biologists world-wide,” says Marc.

The automation tools developed at the University of Colorado at Boulder, Center for 3D Electron Microscopy, allow capture of 25,000 TEM images weekly. At the same time, the Scientific Computing and Imaging Institute at the University of Utah developed software to automatically merge thousands of images into gigabyte-scale mosaics and align the mosaics into terabyte-scale volumes. And in parallel, teams at the Moran Eye Center developed TEM-compatible molecular probes and classification software to tag every cell with a molecular signature, creating “color” TEM imaging.

As part of this project, the authors will soon reveal the very first molecular level map of the entire retina and neuronal networks in both a normal mammalian retina and genetic models of retinal degeneration. More than 92 percent of this 400,000-image volume has been built and should be complete by mid-April. Lead author James Anderson explains, "This technology lets the neuroscience field build circuitry blueprints for healthy neural tissues. We can compare diseased tissues to these blueprints to understand how they rewire the brain and use them to evaluate the effectiveness of treatments which aren't detectable with other methods."

While this molecular model of the retina is groundbreaking, the technology will extend far beyond ophthalmology. This is a new way to explore traumatic brain injury, neurodegenerative diseases, and epilepsy. It also makes screening of genetic models practical. By combining these tools with advanced image processing, the questions that can be explored by TEM may be limited only by the imaginations of biologists.

Important Notes for Members of the Media

PLEASE ADD THE LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.1000074

All works published in PLoS Biology are open access. Everything is immediately available—to read, download, redistribute, include in databases, and otherwise use—without cost to anyone, anywhere, subject only to the condition that the original authorship and source are properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.

Robert Marc | Newswise Science News
Further information:
http://www.utah.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>