Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advance Cuts Brain Mapping Time from Years to Months

31.03.2009
In this week's open-access journal PLoS Biology, research teams at the University of Utah John A. Moran Eye Center and the University of Colorado at Boulder report technical advances that have reduced the time it takes to process high-speed "color" ultrastructure mapping of brain regions down to a few months.

Mapping the billions of connections in the brain is a grand challenge in neuroscience. The current method for mapping interconnected brain cells involves the use of room-size microscopes known as transmission electron microscopes (TEMs).

Until now the process of mapping even small areas of the brain using these massive machines would have required several decades. In this week's open-access journal PLoS Biology, research teams at the University of Utah John A. Moran Eye Center and the University of Colorado at Boulder report technical advances that have reduced the time it takes to process high-speed "color" ultrastructure mapping of brain regions down to a few months.

These advances did not require the invention of new electron microscopes. The technical leap comes mostly from new powerful software that “takes over” the building, connecting and viewing of terabyte scale pictures produced by TEMs. Perhaps just as important is the fact that these researchers are now making these technologies available worldwide to scientists in multiple fields of research. “Our goals were to unleash a global network of electron microscopes and provide web-accessible imagery for battalions of brain network analysts,” said Robert Marc, Ph.D., Director of Research for the Moran Eye Center at the University of Utah.

Marc and this team of researchers have been working on this project for eight years. They have refined the software and molecular tools to where they are now able to share them globally. “This changes the playing field for building brain maps from a few specialized laboratories to the desktops of biologists world-wide,” says Marc.

The automation tools developed at the University of Colorado at Boulder, Center for 3D Electron Microscopy, allow capture of 25,000 TEM images weekly. At the same time, the Scientific Computing and Imaging Institute at the University of Utah developed software to automatically merge thousands of images into gigabyte-scale mosaics and align the mosaics into terabyte-scale volumes. And in parallel, teams at the Moran Eye Center developed TEM-compatible molecular probes and classification software to tag every cell with a molecular signature, creating “color” TEM imaging.

As part of this project, the authors will soon reveal the very first molecular level map of the entire retina and neuronal networks in both a normal mammalian retina and genetic models of retinal degeneration. More than 92 percent of this 400,000-image volume has been built and should be complete by mid-April. Lead author James Anderson explains, "This technology lets the neuroscience field build circuitry blueprints for healthy neural tissues. We can compare diseased tissues to these blueprints to understand how they rewire the brain and use them to evaluate the effectiveness of treatments which aren't detectable with other methods."

While this molecular model of the retina is groundbreaking, the technology will extend far beyond ophthalmology. This is a new way to explore traumatic brain injury, neurodegenerative diseases, and epilepsy. It also makes screening of genetic models practical. By combining these tools with advanced image processing, the questions that can be explored by TEM may be limited only by the imaginations of biologists.

Important Notes for Members of the Media

PLEASE ADD THE LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.1000074

All works published in PLoS Biology are open access. Everything is immediately available—to read, download, redistribute, include in databases, and otherwise use—without cost to anyone, anywhere, subject only to the condition that the original authorship and source are properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.

Robert Marc | Newswise Science News
Further information:
http://www.utah.edu

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>