Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An advance toward blood transfusions that require no typing

10.03.2011
Scientists are reporting an "important step" toward development of a universal blood product that would eliminate the need to "type" blood to match donor and recipient before transfusions. A report on the "immunocamouflage" technique, which hides blood cells from antibodies that could trigger a potentially fatal immune reaction that occurs when blood types do not match, appears in the ACS journal, Biomacromolecules.

Maryam Tabrizian and colleagues note that blood transfusions require a correct match between a donor and the recipient's blood. This can be a tricky proposition given that there are 29 different red blood cells types, including the familiar ABO and Rh types. The wrong blood type can provoke serious immune reactions that result in organ failure or death, so scientists have long sought a way to create an all-purpose red blood cell for transfusions that doesn't rely on costly blood typing or donations of a specific blood type.

To develop this "universal" red blood cell, the scientists discovered a way to encase living, individual red blood cells within a multilayered polymer shell. The shell serves as a cloaking device, they found, making the cell invisible to a person's immune system and able to evade detection and rejection. Oxygen can still penetrate the polymer shell, however, so the red blood cells can carry on their main business of supplying oxygen to the body. "The results of this study mark an important step toward the production of universal RBCs," the study states.

The authors acknowledge funding from the Fonds de la Recherche en Santé du Québec, the Natural Sciences and Engineering Council of Canada, the Canadian Institutes for Health Research and FQRNT-Centre for Biorecognition and Biosensors.

ARTICLE FOR IMMEDIATE RELEASE "Investigation of Layer-by-Layer Assembly of Polyelectrolytes on Fully Functional Human Red Blood Cells in Suspension for Attenuated Immune Response"

CONTACT:
Maryam Tabrizian, Ph.D.
Department of Biomedical Engineering and Faculty of Dentistry
McGill University
Montreal, Canada
Phone: (514) 398-8129
Email: maryam.tabrizian@mcgill.ca

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>