Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adult stem cells may improve cardiac function in angina patients

08.07.2011
Study finds improvement in chest pain and exercise tolerance

New research published online today in Circulation Research found that injections of adult patients' own CD34+ stem cells reduced reports of angina episodes and improved exercise tolerance time in patients with chronic, severe refractory angina (severe chest discomfort that did not respond to other therapeutic options).

The phase II prospective, double-blind, randomized, controlled clinical trial was conducted at 26 centers in the United States, and is part of a long-term collaboration between researchers at Northwestern University Feinberg School of Medicine and Baxter International Inc. The objective of the trial was to determine whether delivery of autologous (meaning one's own) CD34+ stem cells directly into multiple targeted sites in the heart might reduce the frequency of angina episodes in patients suffering from chronic severe refractory angina, under the hypothesis that CD34+ stem cells may be involved in the creation of new blood vessels and increase tissue perfusion.

"Early research across multiple disease categories suggests that stem cells generated within the body in adults may have therapeutic benefit. This is the first controlled trial treating chronic myocardial ischemia (CMI) patients with their own stem cells to achieve significant reductions in angina frequency and improvement in exercise tolerance," said lead investigator Douglas W. Losordo, MD, director, Feinberg Cardiovascular Research Institute and the Eileen M. Foell Professor of Heart Research at Northwestern's Feinberg School of Medicine and director, Program in Cardiovascular Regenerative Medicine at Northwestern Memorial Hospital. "While we need to validate these results in phase III studies before definitive conclusions can be drawn, we believe this is an important milestone in considering whether the body's own stem cells may one day be used to treat chronic cardiovascular conditions."

The research team mobilized and extracted stem cells from all participants before randomizing them to one of three treatment groups: low- or high-dose cell concentrations, or placebo, and administered the regimens in 10 distinct sites in the heart tissue through a multi-point injection catheter.

At six months after treatment, patients in the low-dose treatment group reported significantly fewer episodes of angina than patients in the control group (6.8 vs. 10.9 episodes per week), and maintained lower episodes at one year after treatment (6.3 vs. 11 episodes per week). Additionally, the low-dose treatment group was able to exercise (on a treadmill) significantly longer at six months after treatment, as compared with those in the control group (139 seconds vs. 69 seconds, on average). Angina episodes and exercise tolerance rates were also improved in the high-dose treated group at six months and at one year post treatment compared to the control group.

"The concept of using one's own stem cells to treat disease is highly attractive to the medical community and this research is consistent with Baxter's commitment to driving scientific advances that can lead to promising new treatments for critically ill patients," said Norbert Riedel, Ph.D., Baxter's chief scientific officer. "These results provide important insights into the potential for these cells to be used in larger scale settings, and we look forward to moving into phase III studies in the near future to hopefully substantiate these results."

When comparing major adverse cardiac events, there was no evidence of complications related to the autologous stem cells. Three deaths occurred during the trial, one from procedural complications due to the inherent risks of cardiac surgery, the others unrelated to the treatment (all in the control group). Myocardial infarction (MI or heart attack) occurred in seven of the control group patients. There were three MIs each in the low-dose and high-dose patient groups.

Previous preclinical studies of autologous CD34+ stem cells have shown an increase in capillary density and improved cardiac function in models of acute and chronic myocardial ischemia. This phase II study is based on a phase I/II study, which provided early evidence of the feasibility, safety and bioactivity of these autologous stem cells in a similar setting.

Angina is characterized as chest discomfort due to a lack of sufficient blood supply to the heart associated with obstructive coronary artery disease (CAD). More than 850,000 patients in the United States experience refractory angina that has not responded to other therapeutic options, according to current estimates. This leads patients to reduce their activity levels significantly and negatively impacts their quality of life.

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>