Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adding a stent during minimally invasive surgery to repair aneurysms prevents recurrence

27.07.2011
Stent makes 'coiling' surgery more promising option

The addition of a simple stent can help prevent potentially lethal blood vessel bulges in the brain from recurring after they are repaired in a minimally invasive "coiling" procedure, according to new research by Johns Hopkins physicians. A report on the research, published in the July Journal of Neurointerventional Surgery, could make coiling a more viable option for the 30,000 people diagnosed with brain aneurysms each year in the United States, the investigators say.

Cerebral aneurysms, abnormal outward pouching of blood vessels in the brain, are traditionally repaired by an "open" operation, in which surgeons remove part of the skull, cut into the brain to reach the affected blood vessel, and then place a metal clip on the vessel where it balloons outward to close it down. In the past several years, surgeons are increasingly repairing aneurysms through coiling, in which they thread a platinum wire into a small incision in the groin, push it through the body's network of blood vessels to the bulging one, then pack the wire into the bulge where a natural clotting reaction closes it off.

Though endovascular (through the vessel) coiling has significant benefits compared to clipping, such as a lower risk of infection and recovery times measured in weeks instead of months, it also comes with a significant drawback—recurrence of the aneurysm about a third of the time, says study leader Alex Coon, M.D., assistant professor of neurosurgery, neurology and radiology and director of endovascular surgery at the Johns Hopkins University School of Medicine. Traditional aneurysm surgery has a low recurrence rate of about two percent.

To avoid recurrence and the need for further surgery, some surgeons have experimented with insertion of a stent, or small tube, in the blood vessel near the neck of the aneurysm. The goal is to prop open the affected vessel so that more wire can be packed into the bulge.

To learn whether stents actually prevent recurrence or add complications, Coon and his colleagues looked at medical records of 90 people whose aneurysms were repaired by coiling at The Johns Hopkins Hospital between May 1992 and March 2009. A stent was used in a third of the operations.

After two years of follow-up, the researchers found that aneurysms recurred in more than 40 percent of patients who did not have stents. The recurrence rate in the stented patients was only about 15 percent, and stented patients had no more complications than those without stents.

Coon notes that endovascular surgery for aneurysms is becoming more common, and knowing what can prevent recurrence will help surgeons and patients make informed decisions about the choice of procedure.

"It's easy to treat someone's aneurysm, but can you treat it durably and make it last? We've now shown in our study that stenting—something that makes sense from an engineering perspective, a clinical perspective and a common sense perspective—truly works," he says.

Other Johns Hopkins researchers who participated in this study include Geoffrey P. Colby, Alexandra R. Paul, Martin G. Radvany, Dheeraj Ghandi, Philippe Gailloud, Judy Huang, and Rafael J. Tamargo.

For more information, go to:

http://www.hopkinsmedicine.org/neurology_neurosurgery/
http://www.hopkinsmedicine.org/neurology_neurosurgery/news/podcasts/coon-cerebrovascular-endovascular.html

Christen Brownlee | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>