Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adding a stent during minimally invasive surgery to repair aneurysms prevents recurrence

27.07.2011
Stent makes 'coiling' surgery more promising option

The addition of a simple stent can help prevent potentially lethal blood vessel bulges in the brain from recurring after they are repaired in a minimally invasive "coiling" procedure, according to new research by Johns Hopkins physicians. A report on the research, published in the July Journal of Neurointerventional Surgery, could make coiling a more viable option for the 30,000 people diagnosed with brain aneurysms each year in the United States, the investigators say.

Cerebral aneurysms, abnormal outward pouching of blood vessels in the brain, are traditionally repaired by an "open" operation, in which surgeons remove part of the skull, cut into the brain to reach the affected blood vessel, and then place a metal clip on the vessel where it balloons outward to close it down. In the past several years, surgeons are increasingly repairing aneurysms through coiling, in which they thread a platinum wire into a small incision in the groin, push it through the body's network of blood vessels to the bulging one, then pack the wire into the bulge where a natural clotting reaction closes it off.

Though endovascular (through the vessel) coiling has significant benefits compared to clipping, such as a lower risk of infection and recovery times measured in weeks instead of months, it also comes with a significant drawback—recurrence of the aneurysm about a third of the time, says study leader Alex Coon, M.D., assistant professor of neurosurgery, neurology and radiology and director of endovascular surgery at the Johns Hopkins University School of Medicine. Traditional aneurysm surgery has a low recurrence rate of about two percent.

To avoid recurrence and the need for further surgery, some surgeons have experimented with insertion of a stent, or small tube, in the blood vessel near the neck of the aneurysm. The goal is to prop open the affected vessel so that more wire can be packed into the bulge.

To learn whether stents actually prevent recurrence or add complications, Coon and his colleagues looked at medical records of 90 people whose aneurysms were repaired by coiling at The Johns Hopkins Hospital between May 1992 and March 2009. A stent was used in a third of the operations.

After two years of follow-up, the researchers found that aneurysms recurred in more than 40 percent of patients who did not have stents. The recurrence rate in the stented patients was only about 15 percent, and stented patients had no more complications than those without stents.

Coon notes that endovascular surgery for aneurysms is becoming more common, and knowing what can prevent recurrence will help surgeons and patients make informed decisions about the choice of procedure.

"It's easy to treat someone's aneurysm, but can you treat it durably and make it last? We've now shown in our study that stenting—something that makes sense from an engineering perspective, a clinical perspective and a common sense perspective—truly works," he says.

Other Johns Hopkins researchers who participated in this study include Geoffrey P. Colby, Alexandra R. Paul, Martin G. Radvany, Dheeraj Ghandi, Philippe Gailloud, Judy Huang, and Rafael J. Tamargo.

For more information, go to:

http://www.hopkinsmedicine.org/neurology_neurosurgery/
http://www.hopkinsmedicine.org/neurology_neurosurgery/news/podcasts/coon-cerebrovascular-endovascular.html

Christen Brownlee | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>