Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acute psychological stress promotes skin healing in mice

07.08.2014

Naturally-occurring steroids, which damage skin during prolonged stress, can be beneficial over shorter periods, say UCSF researchers

Brief, acute psychological stress promoted healing in mouse models of three different types of skin irritations, in a study led by UC San Francisco researchers.

The scientists found that healing was brought about by the anti-inflammatory effects of glucocorticoids – steroid hormones – produced by the adrenal glands in response to stress.

"Under chronic stress, these same naturally-occurring steroids damage the protective functions of normal skin and inhibit wound healing, but during shorter intervals of stress, they are beneficial for inflammatory disorders and acute injury in both mice and humans," said senior investigator Peter Elias, MD, a UCSF professor of dermatology based at the San Francisco VA Medical Center (SFVAMC).

"We believe that our findings explain why this otherwise harmful component of the stress response has been preserved during human evolution," he said.

The study was published online in the Journal of Investigative Dermatology on August 7, 2014, in advance of print publication in the journal.

The scientists studied mouse models of three types of common skin irritations: irritant contact dermatitis, caused by exposure to an irritant such as a soap or solvent; acute allergic contact dermatitis, of the sort caused by poison ivy or poison oak; and atopic dermatitis, or eczema.

After exposure to irritants on a small patch of skin on one ear, one group of mice was returned to its regular cages, while another group was put in a stressful situation – being placed in very small enclosures for 18 hours a day over the course of four days.

The researchers found that the stressed mice showed significantly reduced inflammation and faster healing in all three types of skin irritation.

When stressed mice were simultaneously given mifepristone, which blocks steroid action, all of the healing benefits of stress disappeared. "This demonstrated the central role of internal steroids in providing these benefits," said Elias.

He noted that other researchers have recently proposed that psychological stress has a potential role in promoting healing, "but that work has focused on the immune system rather than glucocorticoids as the responsible, beneficial mediator."

According to Elias, the study provides a clue to an evolutionary puzzle: why, over millions of years, humans have preserved the tendency to produce steroids under stress. Previous research by Elias's laboratory and others has demonstrated that prolonged exposure to steroids harms both the structure and function of skin and other organs.

"Our ancestors did not have an arsenal of pharmaceutical steroids available to treat acute illnesses or injuries," Elias observed. "This safe, effective internal anti-inflammatory system provides just the correct amount of steroids to promote healing, over a time interval that is too short to cause harm."

Elias emphasized that the study did not look at the implications for human medical treatments. However, he contrasted the "substantial benefits" seen from modest increases in glucocorticoid levels brought on by short-term stress with the "adverse effects that we see all too commonly" with steroid therapy. Elias speculated that those negative effects could be the result of "overly aggressive treatment – too high doses, and perhaps for unnecessarily prolonged treatment intervals."

He said that while his research team did not study other kinds of inflammatory disorders, "the same benefits of psychological stress should accrue in any acute illness or injury."

###

Co-authors of the study are Mao-Qiang Man, MD, of SFVAMC and UCSF; Juan-Luis Santiago, MD, of SFVAMC, UCSF, and Hospital General Universitario del Ciudad Real, Spain; Melanie Hupe of SFVAMC and UCSF; Gemma Martin-Ezquerra, MD, of Hospital del Mar-IMIM, Barcelona, Spain; Jong-Kyum Youm, PhD, and Tammy Zhai of SFVAMC and UCSF; Carles Trullas, PhD, of ISDIN, Barcelona; and Kenneth R. Feingold, MD, of SFVAMC and UCSF.

The study was funded by the SFVAMC and the National Institutes of Health.

UCSF is the nation's leading university exclusively focused on health. Now celebrating the 150th anniversary of its founding as a medical college, UCSF is dedicated to transforming health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy; a graduate division with world-renowned programs in the biological sciences, a preeminent biomedical research enterprise and two top-tier hospitals, UCSF Medical Center and UCSF Benioff Children's Hospital San Francisco. Please visit http://www.ucsf.edu.

Jeffrey Norris | Eurek Alert!

Further reports about: SFVAMC UCSF anti-inflammatory exposure glucocorticoids skin steroids

More articles from Health and Medicine:

nachricht Exploring a new frontier of cyber-physical systems: The human body
18.05.2015 | National Science Foundation

nachricht Soft-tissue engineering for hard-working cartilage
18.05.2015 | Technische Universitaet Muenchen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Climate engineering may save coral reefs, study shows

26.05.2015 | Earth Sciences

Biodiversity: 11 new species come to light in Madagascar

26.05.2015 | Life Sciences

Location matters in the lowland Amazon

26.05.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>