Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Active component of grape seed extract effective against cancer cells

05.12.2013
A University of Colorado Cancer Center study published online ahead of print in the journal Nutrition and Cancer describes the laboratory synthesis of the most active component of grape seed extract, B2G2, and shows this synthesized compound induces the cell death known as apoptosis in prostate cancer cells while leaving healthy cells unharmed.

gWefve shown similar anti-cancer activity in the past with grape seed extract (GSE), but now we know B2G2 is its most biologically active ingredient which can be synthesized in quantities that will allow us to study the detailed death mechanism in cancer cells,h says Alpna Tyagi, PhD, of the University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences. Tyagi works in the lab of CU Cancer Center investigator and Skaggs School of Pharmacy faculty member, Chapla Agarwal, PhD.


An active ingredient of grape seed extract, B2G2, acts against cancer cells.

The group has spent more than a decade demonstrating the anti-cancer activity of GSE in controlled, laboratory conditions. For example, previous studies have shown the GSE effectiveness against cancer cells and have also shown its mechanism of action. gBut until recently, we didnft know which constituent of GSE created this effect. This naturally occurring compound, GSE, is a complex mixture of polyphenols and also so far it has been unclear about the biologically active constituents of GSE against cancer cells,h Tyagi says.

Eventually the group pinpointed B2G2 as the most active compound, but, gitfs expensive and it takes a long time to isolate B2G2 from grape seed extract,h Tyagi says.

This expense related to the isolation of B2G2 has limited the groupfs further exploration. So instead of purifying B2G2 from GSE, the group decided to synthesize it in the lab. The current study reports the success of this effort, including the ability to synthesize gram-quantity of B2G2 reasonably quickly and inexpensively.

In the paperfs second half, the group shows anti-cancer activity of synthesized B2G2 similar in mechanism and degree to overall GSE effectiveness.

gOur goal all along has been a clinical trial of the biologically active compounds from GSE against human cancer. But itfs difficult to earn FDA approval for a trial in which we donft know the mechanisms and possible effects of all active components.

Therefore, isolating and synthesizing B2G2 is an important step because now we have the ability to conduct more experiments with the pure compound. Ongoing work in the lab further increases our understanding of B2G2Œs mechanism of action that will help for the preclinical and clinical studies in the future,h Tyagi says.

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>